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Abstract 

Characterizing DNA methylation patterns is important for addressing key questions 

in evolutionary biology, development, geroscience, and medical genomics. While 

costs are decreasing, whole-genome DNA methylation profiling remains prohibi-

tively expensive for most population-scale studies, creating a need for cost-effective, 
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reduced representation approaches (i.e., assays that rely on microarrays, enzyme 

digests, or sequence capture to target a subset of the genome). Most common whole 

genome and reduced representation techniques rely on bisulfite conversion, which 

can damage DNA resulting in DNA loss and sequencing biases. Enzymatic methyl 

sequencing (EM-seq) was recently proposed to overcome these issues, but thorough 

benchmarking of EM-seq combined with cost-effective, reduced representation strat-

egies is currently lacking. To address this gap, we optimized the Targeted Methylation 

Sequencing protocol (TMS)—which profiles ~4 million CpG sites—for miniaturization, 

flexibility, and multispecies use. First, we tested modifications to increase through-

put and reduce cost, including increasing multiplexing, decreasing DNA input, and 

using enzymatic rather than mechanical fragmentation to prepare DNA. Second, we 

compared our optimized TMS protocol to commonly used techniques, specifically 

the Infinium MethylationEPIC BeadChip (n = 55 paired samples) and whole genome 

bisulfite sequencing (n = 6 paired samples). In both cases, we found strong agree-

ment between technologies (R2 = 0.97 and 0.99, respectively). Third, we tested the 

optimized TMS protocol in three non-human primate species (rhesus macaques, 

geladas, and capuchins). We captured a high percentage (mean = 77.1%) of tar-

geted CpG sites and produced methylation level estimates that agreed with those 

generated from reduced representation bisulfite sequencing (R2 = 0.98). Finally, we 

confirmed that estimates of 1) epigenetic age and 2) tissue-specific DNA methyl-

ation patterns are strongly recapitulated using data generated from TMS versus 

other technologies. Altogether, our optimized TMS protocol will enable cost-effective, 

population-scale studies of genome-wide DNA methylation levels across human and 

non-human primate species.

Author summary

DNA methylation profiling is important for understanding key questions in biol-
ogy, but current techniques can be expensive and have technical limitations. 
Enzymatic methyl sequencing (EM-seq) was proposed as a potential solution, 
but thorough testing is still needed. In this study, we optimized a new method 
(Targeted Methylation Sequencing or TMS) to make it more cost-effective and 
flexible, and applied it to multiple species. We tested modifications to increase 
sample multiplexing, reduce DNA input, and use enzymatic fragmentation. We 
compared our optimized TMS protocol to common methylation profiling tech-
niques and found strong agreement in DNA methylation levels. We also success-
fully applied the optimized TMS protocol to three non-human primate species. 
Finally, we show that common analyses of DNA methylation data produce similar 
results using TMS data versus data from other technologies. Together, we hope 
this work will enable cost-effective, population-scale DNA methylation profiling 
across human and non-human species.
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Introduction

Understanding variation in DNA methylation levels across tissues, the lifespan, 
disease states, and populations is important for addressing key questions in biol-
ogy. DNA methylation—the covalent addition of methyl groups to cytosines—is a 
semi-malleable and environmentally-responsive epigenetic modification involved in 
gene regulation in many species, including our own [1]. Because DNA methylation 
moderates gene expression throughout the life course, it is critical for processes such 
as development [2–4], cell programming [5], tissue specificity [6], aging [7–11], and 
disease progression [12–14]. For example, changes in DNA methylation are consid-
ered a “hallmark” of the aging process, with most studies reporting age-associated 
gains in methylation in hypomethylated regions (e.g., promoters and transcribed 
regions) and age-associated losses in methylation in hypermethylated regions (e.g., 
heterochromatic regions, Polycomb-repressed regions) [15–17]. These age-related 
patterns are so consistent that DNA methylation variation has been used to construct 
molecular clocks that reliably predict chronological age [18,19]. Further, because 
DNA methylation is known to respond to environmental inputs, it has been implicated 
as a mechanism through which diverse environmental exposures can impact long-
term physiology and health (e.g., famine [20–24], psychosocial stress [25–29], or 
infection [30–33]).

To profile genome-wide DNA methylation at scale, most studies rely on reduced 
representation methods: human studies have largely favored microarrays, while 
non-human studies have favored reduced representation bisulfite sequencing 
(RRBS) due to the historical lack of species-specific microarrays (though recent 
work has led to the development of the Infinium Mouse DNA Methylation BeadChip 
as well as the Mammalian Methylation Array) [34–36]. Both RRBS and microar-
rays quantify DNA methylation at a subset (1–5%) of CpGs in the genome, and 
thus provide a cost-effective strategy relative to genome-wide assays (e.g., whole 
genome bisulfite sequencing (WGBS)). For example, the Infinium MethylationE-
PIC v2.0 BeadChip, or EPIC array, covers ~ 930K CpG sites including functional 
elements identified by the ENCODE project [37], DNase hypersensitive sites, and 
putatively important sites for human disease and development [38,39]. In contrast, 
RRBS fragments DNA using the Msp1 enzyme that cuts DNA at CCGG motifs, 
which following size selection, enriches for 1–5% of the genome with high CpG 
content such as CpG islands and gene bodies [34,40]. Importantly, both microar-
rays and RRBS rely on sodium bisulfite, which converts unmethylated cytosines to 
thymine while leaving methylated cytosines protected from conversion. This chem-
ical reaction requires high pHs and temperatures, which can cause unwanted DNA 
fragmentation and damage, especially to unmethylated cytosines [41]. Ultimately, 
such damage can create difficulties during library preparation as well as biases in 
the downstream data [41–43].

Enzymatic methyl sequencing (EM-seq) offers a useful alternative to bisulfite 
sequencing with several key benefits: EM-seq relies on enzymatic rather than chem-
ical conversion of unmethylated cytosines to thymine, resulting in substantially less 
DNA damage [42]. As a result, whole genome EM-seq has been shown to recover 
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more CpGs sites, have lower duplication rates, have better between-replicate correlations, and require less DNA input 
than WGBS [42]. However, existing EM-seq benchmarked protocols rely on whole genome rather than reduced represen-
tation strategies, hindering their adoption especially for population-scale studies. To address this gap, Twist Biosciences 
recently created a hybrid capture panel that targets ~4 million CpG sites in the human genome and is compatible with 
EM-seq. The Twist methylation capture reaction uses ~ 550k probes to target functionally relevant CpG sites (e.g., those 
in enhancers, gene bodies, and near transcription start sites) and to cover ~95% of CpG sites included on the widely used 
EPIC array [44–47]. Off the shelf, this protocol is similar or lower in cost to existing reduced representation approaches. 
However, we note that total cost for any sequencing-based approach will depend on the desired coverage (i.e., the aver-
age number of reads that cover each CpG site); best practices for average per CpG coverage are still debated, but most 
studies recommend at least 20x [48–51]. Increased coverage will increase the precision of DNAm estimates, and thus to 
some degree the desired coverage depends on the anticipated effect size.

Here, we aimed to develop and benchmark an optimized and further cost-reduced version of the targeted methylation 
sequencing (TMS) approach suitable for population-scale studies, including both human and non-human primate (NHP) 
studies (Fig 1A). To do so, we built upon the off the shelf TMS protocol (Fig 1B), which recommends 8 plexing of sam-
ples per capture reaction and 200 ng of DNA input, and tested four multiplexing strategies (12, 24, 48, and 96 plex, using 
200 ng of sample input; Fig 1C). We also tested five DNA input amounts (25, 50, 100, 200, and 400ng, using the 12-plex 
strategy) and other minor protocol modifications such as varying the annealing temperature during hybrid capture and 
varying the method used for DNA fragmentation (Fig 1C). Following optimization, we assessed: 1) the robustness of our 
protocol through a direct comparison with the EPIC array and WGBS; 2) the extension of optimized TMS for use in NHP 
species; and 3) the ability of our protocol to recapitulate biological results (epigenetic age estimates and identification of 
tissue-specific patterns) obtained from data generated using other technologies (see Table 1 for sample sizes and sample 
information; Fig 1C). Overall, we found that we were able to miniaturize and optimize the TMS protocol to ~USD 80 per 
sample, while maintaining data quality and comparability to existing methods. In total, our protocol provides coverage of 
approximately four times as many CpG sites relative to the EPIC array at one fourth the cost—a ~ 16-fold gain in the data-
to-price ratio (S1 Table).

Results

Data quality is robust to a range of multiplexing strategies, input amounts, and protocol modifications

Experiments 1 & 2: Varying multiplexing strategies and input amounts.  Using DNA from a human population in 
Bolivia (Tsimane, see [52]), we tested four multiplexing strategies (12, 24, 48, and 96 plex, using 200ng of DNA sample 
input) and five DNA input amounts (25, 50, 100, 200, and 400ng, using the 12-plex strategy). Raw quality control metrics 
such as percent CHH methylation (a proxy for the rate at which unmethylated cytosines are converted to thymine) and 
mapping efficiency (percent of reads uniquely mapped to the genome) were high for all samples. Mapping efficiency was 
consistent across plexing strategies (average mapping efficiency: 12-plex = 71.9%, 24-plex = 72.9%, 48-plex = 72.5%, and 
96-plex = 73.5%; ANOVA: F-value = 0.843, p-value = 0.472; Fig 2A) but affected by input amount, with higher DNA input 
having greater mapping efficiency (ANOVA: F-value = 13.57, p-value < 0.001, Fig 2B and S3 Table). CHH methylation was 
consistently well below 1%, indicative of high conversion rate across all plexing and input strategies (range = 0.1-0.27%; 
S1 Fig, and S4 and S5 Tables) [53].

After filtering for CpG sites with>5x coverage that were within the Twist probe set (+/- 200 bp) and that were covered 
in the majority of samples in a given experiment, we retained an average of 4,197,008 CpG sites (s.d. = 546,767) across 
plexing experiments and 4,051,941 CpG sites (s.d. = 93,106) across input experiments (S6 and S7 Tables). On aver-
age, this represented 96.42% and 92.19% coverage of the TMS probe set across the plexing and input experiments, 
respectively (S8 and S9 Tables). Across experiments, we found average coverage of targeted CpG sites to be far greater 
than our minimum required coverage of 5x, ranging from 21-89x across datasets (S2 Fig and S2 Table). In addition to 
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consistently recovering the expected set of CpGs, we also observed repeatable methylation levels across the plexing 
and input experiments (all R2 > 0.99; S10 and S11 Tables). The CpGs covered by our experiments were distributed across 
diverse genomic annotations, and the median DNA methylation levels within a given annotation displayed expected pat-
terns (Fig 2C and 2D) [54]. For example, we observed high levels of methylation in quiescent and heterochromatin regions 
and low levels of methylation in promoters and transcribed regions.

Experiments 3 & 4: Optimizing capture efficiency and DNA fragmentation strategies.  In experiments 1 and 2, 
we used the recommended 65°C annealing temperature during the hybrid capture step—where prepared DNA is bound 
to the capture probe set to select CpG sites of interest—and the recommended 2uL of methylation enhancer, which 
increases the efficiency of this reaction. Here, we found that ~3/4 of all of our mapped reads were “on-target”, meaning 
that they overlapped with the designed probe set and represented successful hybrid capture (S8 and S9 Tables). This 
suggests that ~ ¼ of reads are “off target” and randomly distributed across the genome rather than within our regions 
of interest. We therefore performed a third experiment using Tsimane DNA to test two protocol modifications that might 
decrease the off-target proportion: we increased the annealing temperature (testing 65°C or 68°C) and we varied the 

Fig 1.  Experimental design and study populations. [A] To optimize the TMS protocol, we used samples from three human and three NHP popula-
tions: the Tsimane of Bolivia, a Vanderbilt University Medical Center cohort, the Orang Asli of Malaysia, rhesus macaques from Cayo Santiago in Puerto 
Rico, tufted capuchins from captive sites throughout the United States, and gelada monkeys from Ethiopia. Created using BioRender. [B] The TMS pro-
tocol begins with DNA fragmentation and adapter ligation. Next, two enzymes, TET2 and APOBEC, are used to oxidize and deaminate the DNA. TET2 
recognizes methyl groups attached to cytosines and converts them to Ca/g. APOBEC follows TET2 and converts the unmethylated cytosines to uracils. 
Following PCR amplification (which converts uracils to thymines), hybrid capture is used to enrich for targeted regions of the genome. Samples are then 
assayed via high throughput sequencing. Created using Microsoft Powerpoint. [C] Overview of experiments and analyses. The samples used for each 
set of experiments are noted by a population-specific icon. Icons from Biorender, OpenClipArt, and Microsoft Powerpoint.

https://doi.org/10.1371/journal.pgen.1011667.g001

https://doi.org/10.1371/journal.pgen.1011667.g001
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amount of methylation enhancer (testing 0uL, 2uL, or 4uL). We note that similar previous work has reported on-target read 
percentages of 75–85% [55–57], suggesting the capture reaction will likely never be completely efficient.

In experiment 3, we found that increasing the annealing temperature from 65°C to 68°C resulted in a lower proportion 
of off-target reads (ANOVA: F-value = 84.2, p-value < 0.0001; Figs 2E and S4, and S12 Table). Across samples annealed 
at 65°C, an average of 78.5% of reads were on-target, while this number rose to 84.2% at 68°C. However, this increase 
in capture efficiency came at a cost to the breadth of CpG sites covered: across samples annealed at 65°C, we observed 
coverage of on average 92.0% of the probe set, while this number fell to 72.2% for samples annealed at 68°C (Fig 2F, and 
S13 and S14 Tables). This suggests that higher annealing temperatures lead to greater but more specific binding during 
the hybrid capture step, and thus the increased capture efficiency comes at the expense of recovering all the expected 
CpG sites. In general, we did not find meaningful differences across methylation enhancer amounts and we therefore 
excluded this reagent from downstream experiments (Fig 2E and 2F). Given the loss of certain genomic regions at 68°C, 
downstream experiments focused on a 65°C annealing temperature.

We next performed a fourth experiment focused on protocol optimization, in which we varied the strategies used to 
fragment genomic DNA prior to EM-seq library preparation: specifically, we tested mechanical fragmentation via Covaris 
sonication against enzymatic fragmentation with the NEBNext UltraShear reagent. Mechanical fragmentation is the current 
standard approach but is expensive, requires special equipment, and is labor intensive. Conversely, enzymatic fragmenta-
tion is cheaper, does not require special equipment, and is more compatible with automation. For experiments 3 and 4, we 
used the 96-plex strategy and 200 ng of sample input, since experiments 1 and 2 suggested that data quality does not suf-
fer from higher plexing strategies. These experiments used DNA from a human population in Malaysia, the Orang Asli [58].

Enzymatic fragmentation resulted in a similar number of covered sites as was previously observed with mechanical 
fragmentation (n = 4,591,123 and 4,523,981 filtered CpG sites for the 10 and 20 minute protocols, respectively). Average 
site-specific methylation levels were also highly concordant between approaches (mechanical versus 10 min enzymatic: 
R2 = 0.9875; mechanical versus 20 min enzymatic: R2 = 0.9876; 10 min versus 20 min enzymatic: R2 = 0.9944; S5 Fig). This 
was also true when we focused on a subset of DNA samples processed using both methods (n = 3; mechanical versus 
10 min enzymatic: average R2 = 0.971; mechanical versus 20 min enzymatic: average R2 = 0.971; 10 min versus 20 min 
enzymatic: average R2 = 0.987, S15 Table). From these experiments, we concluded that enzymatic fragmentation can be 
substituted into the protocol with no loss to data quality.

We also used these data, which represent our “best” protocol (96-plex, 200ng input, 65°C annealing, no methylation 
enhancer, enzymatic fragmentation), to understand two critical aspects of experimental design—how many reads one 

Table 1.  Study populations and sample information for each experiment (names of experiments are as described in Results). F = female, 
M = male, VUMC = Vanderbilt University Medical Center. See also S2 Table for sample metadata and read depth.

Population (species) Tissue type Sample size Sex Mean sample age (range) Experiment

Tsimane (human) Whole blood n = 192 103 F;
89 M

49.6 years old
(18.0–83.6)

1, 2, 3, 6, 8

VUMC (human) Whole blood n = 55 31 F;
24 M

Not available 5, 9

Orang Asli (human) White blood cells n = 88 46 F;
42 M

35.3 years old (18–78) 4

Rhesus macaque
(Macaca mulatta)

Heart (16), kidney (16), adrenal (16), 
spleen (16), lung (16), liver (16)

n = 96 39 F;
57 M

10.57 years old
(3.18–19.93)

7, 8, 9

Gelada
(Theropithecus gelada)

Whole blood n = 68 21 F;
47 M

Unknown; all animals >5 years 
old

7

Capuchin
(Sapajus apella)

Whole blood n = 28 19 F;
9 M

19.4 years old (9.0–41.0) 7

Total n = 527

https://doi.org/10.1371/journal.pgen.1011667.t001

https://doi.org/10.1371/journal.pgen.1011667.t001
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would need to generate to achieve a given mean (or median) coverage per CpG site (S6 Fig) and how this mean cover-
age impacts power to detect differential methylation (S3 Fig). In general, we observe a ~ 1:1 relationship between the num-
ber of mapped, paired end reads (in millions) and mean coverage, such that 20 million mapped paired end (40 million total 
reads) translates to ~20x mean coverage (or ~14x median coverage) per CpG site. Using simulations [49,59] of datasets 
of different sizes (n = 100, 200, 400) and mean coverages (20x, 40x, and 80x), we found that increasing coverage can pro-
vide power gains for smaller sample sizes, but in larger datasets increasing coverage will matter less as power is derived 
from the overall sample size rather than gains in precision (S3 Fig).

Epigenomic profiles measured with TMS recapitulate those measured with the EPIC array and WGBS

Experiment 5: Comparison of TMS to the EPIC array.  To ensure that TMS could perform comparably to the most 
popular current reduced-representation technology (the EPIC array), we generated paired data for 55 samples using both 
platforms (and following the 96-plexing, 200 ng input TMS protocol from experiment 1). After filtering, we analyzed 682,295 

Fig 2.  Optimized TMS produces high-quality DNA methylation data across a range of plexing strategies, input amounts, and protocol modi-
fications. [A] High (>70%) mean mapping efficiency across plexing strategies. Each point represents a sample within a plexing strategy and the y-axis 
represents the percent of reads uniquely mapped per sample. [B] Mapping efficiency increases as input amount increases. Each point represents a 
12-plex pool made with varying DNA input amounts per sample, the y-axis represents the percent of reads uniquely mapped per sample. [C] Distribution 
of median DNA methylation levels for CpG sites located within different chromHMM genomic annotations; annotations from NIH Roadmap Epigenomics 
and data from the 96-plex, 200 ng input from experiment 1. [D] The total number of CpG sites falling within different chromHMM genomic annotations 
(using data from the 96-plex, 200 ng input from experiment 1). [E] Percent of reads that are not within the Twist probe set (i.e., off-target reads) following 
protocol modifications to annealing temperature and methylation enhancer (ME) volume. For each set of protocol conditions, the x-axis represents the 
percent of mapped reads that do not overlap with the Twist probe set. [F] Percent of Twist probes that are represented within each dataset following 
protocol modifications to adjust the annealing temperature and ME volume. For each set of protocol conditions, the x-axis represents the percentage of 
Twist probes that were represented by at least 1 read.

https://doi.org/10.1371/journal.pgen.1011667.g002

https://doi.org/10.1371/journal.pgen.1011667.g002
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CpG sites common to both technologies, and found high concordance between per-site DNA methylation levels averaged 
across all individuals in the dataset (R2 = 0.97; Fig 3A). We also examined correlations between the two technologies when 
we subsetted to 1) variably methylated CpG sites (i.e., sites with methylation levels >10% and <90%; mean R2 = 0.83; 
Fig 3B); 2) CpG islands, shores, and shelves (R2 = 0.97, 0.97, 0.94, respectively); 3) hypomethylated (<50% average 
methylation; R2 = 0.89) regions; 4) hypermethylated (>50% average methylation; R2 = 0.70) regions; and 5) particular EPIC 
v2 array probe types (S7 and S8 Figs). Because methylation patterns are relatively consistent across individuals for many 
regions of the human genome, we also confirmed that these correlations were higher for EPIC-TMS data generated from 
the same sample compared to EPIC-TMS comparisons made between random pairs of samples (mean R2 for all sites: 
0.95 versus 0.93 for random sample pairs, mean R2 for variable sites only: 0.83 versus 0.75 for random sample pairs; S9 
Fig).

Of note, the analyses described above reconfirmed a known bias in the EPIC array data [51,60], which does not allow 
for methylation levels of 100%. This is because EPIC-derived DNA methylation levels are represented as beta values, cal-
culated as the ratio of the intensity of the methylated bead type to the total locus intensity plus an offset value. Due to the 
addition of the offset value, beta values of 1 are mathematically impossible. As a result, the correlation between average 
TMS- and EPIC-measured DNA methylation levels is slightly off the x = y line (Fig 3A) and correlations are much lower 
than the genome-wide average for hypo- as well as hyper-methylated regions.

Experiment 6: Comparison of TMS to WGBS.  For further validation, we also generated WGBS data for 6 
Tsimane samples included in experiment 3 (96-plexing, 200 ng input, 65°C annealing temperature, no ME, mechanical 
fragmentation). After filtering and merging with the TMS data, we retained 3,078,771 CpG sites covered by both the 
TMS and WGBS approaches. For these sites, the average methylation levels observed across technologies was highly 
correlated (R2: 0.9871; Fig 3C). We also found that the genome-wide distribution of DNA methylation levels derived from 
WGBS was more similar to TMS than to the EPIC array, specifically in that it included many sites with average methylation 
levels of 100% or close to 100%, as expected (Figs 3D and S10).

TMS can be effectively applied to non-human primate species

Experiment 7: Applying TMS to tufted capuchin, rhesus macaque, and gelada samples.  To enable epigenomic 
analyses in our close primate relatives, we also tested whether TMS (96-plex, 200ng input protocol from experiment 1) 
could be effectively applied to three NHP species: tufted capuchins (Sapajus apella; n = 28 samples from blood), rhesus 
macaques (Macaca mulatta; n = 96 samples from 6 tissues (see S11 Fig and S16 Table)), and geladas (Theropithecus 
gelada; n = 68 samples from blood). While the probe set is designed from the human genome, NHP species share high 
levels of sequence homology with humans, especially in coding regions and regions near genes [61], leading us to 
hypothesize that a majority of CpG sites would be recovered. We mapped the Twist probe sequences to each of the NHP 
genomes to confirm this intuition, and from this analysis expected to capture 3.0-4.8 million CpG sites across the three 
species (Fig 4B). Importantly, for the rhesus macaque samples, we also generated paired RRBS data and compared our 
TMS results to a technology that does not rely on hybrid capture.

When examining initial quality control metrics, we found that all three NHP species had high mapping efficiencies 
(average = 81.96% for capuchins, 82.62% for geladas, and 81.35% for macaques; Fig 4A). Further, the average CHH 
methylation levels were all extremely low (<1%), again suggesting high conversion rates (S12 Fig). Following filter-
ing, we recovered ~ ½ to ¾ of expected CpG sites in the NHP datasets (3,343,133 in capuchin, 5,387,280 in gelada, 
and 5,486,073 in macaque). The number of sites recovered scales generally with divergence time (capuchins share 
a common ancestor with humans 35–45 million years ago, geladas and rhesus macaques share a common ancestor 
with humans 23–28 million years ago) [62]. In all species, we were able to reliably measure more sites than would 
be typical of RRBS (see below), and we note that some of the between-species variation in performance could be 
explained by heterogenous read depth (S2 Table) as well as reference assembly quality. In particular, the quality of 
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the rhesus macaque genome is much higher than the gelada or capuchin (using CNEr in R and the N50() and N90() 
commands [63]): mmul_10 N50 = 153,388,924, N90 = 79,627,064; tgel1 N50 = 147,341,205, N90 = 77,542,005; cimit 
N50 = 5,274,112, N90 = 1,283,179.

When examining average DNA methylation levels across species, we found that, as expected, all exhibited bimodal 
genome-wide profiles similar to humans (Fig 4F). Further, because the rhesus macaque samples were derived from 6 
different tissue types (S11 Fig and S16 Table), we also confirmed that samples displayed expected tissue-specific epi-
genetic patterns. Specifically, we demonstrated that a Principal Components Analysis (PCA) was able to reliably separate 

Fig 3.  Optimized TMS recapitulates DNA methylation levels measured with the EPIC array and WGBS. [A] Correlation in DNA methylation 
levels for EPIC array versus TMS (R2 = 0.97). Each point represents the DNA methylation level of a given CpG averaged across 6 samples measured 
using the EPIC array (x-axis) and 96-plex, 200 ng input TMS (y-axis). The R2 value was generated using linear modeling. Sites were filtered to>5X 
coverage in >75% of samples within each technology. [B] Histogram of R2 values calculated for each individual sample (i.e., comparing per CpG 
DNA methylation levels measured on both technologies for a given sample). R2 values are provided when all CpG sites common to both technol-
ogies are included, as well as when only variably methylated CpG sites are included. [C] Correlation in DNA methylation levels for WGBS versus 
TMS (R2 = 0.9871). Each point represents the DNA methylation level of a given CpG averaged across 6 samples measured using WGBS (x-axis) 
and 96-plex, 200 ng input TMS (y-axis). The R2 value was generated using linear modeling. Sites were filtered to>5X coverage in >75% of samples 
within each technology. [D] Density plot of the average DNA methylation levels detected for common sites between the three technologies (713,282 
sites). Notably, the EPIC array is biased against DNA methylation levels of 100%, as previously observed [51] and explained by the equation used to 
calculate beta values.

https://doi.org/10.1371/journal.pgen.1011667.g003

https://doi.org/10.1371/journal.pgen.1011667.g003
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samples by tissue type (Fig 4C), as has been observed in previous studies using both bisulfite sequencing and the EPIC 
array [64–66].

Experiment 8: Comparison of TMS to RRBS.  Studies of NHP species have historically relied on RRBS because 
of the species-specificity of microarray technologies and the cost barrier of WGBS [49,67,68]. To test how our 
optimized TMS protocol compares to RRBS, we generated paired data for all 96 rhesus macaque samples. After 
filtering both datasets to 721,766 common CpG sites, we found a high concordance of the average DNA methylation 
levels estimated by both technologies (R2 = 0.97; Figs 4D and S13). This remained true when we subsetted specifically 
to 92,692 variably methylated CpG sites (i.e., sites with average DNA methylation levels >0.1 and <0.9; R2 = 0.5945; 
Fig 4E).

Fig 4.  Optimized TMS performs well in non-human primate species and when compared to RRBS. [A] Optimized TMS in NHPs results in 
high mapping efficiencies despite the use of human-specific probes. Here, each of the species are mapped to their respective reference genome. 
We hypothesize that low mapping efficiency in certain rhesus macaque samples is due to variation in sample quality. [B] Number of expected and 
observed CpG sites covered in each NHP genome. Expected sites were derived from mapping the Twist probes to each NHP genome, while observed 
sites represent those detected with a coverage > 5X in >75% of samples. [C] Principal components analysis of TMS-derived DNA methylation levels 
for rhesus macaque samples spanning six distinct tissues. [D] Similar per CpG DNA methylation level estimates using RRBS (x-axis) and optimized 
TMS (y-axis) (R2 = 0.97). [E] Density plot of linear model R2 values obtained from comparing data generated via optimized TMS and RRBS for the 
same rhesus macaque samples. R2 values are provided when all CpG sites common to both technologies are included, as well as when only variably 
methylated (methylation > 10% and methylation < 90%) CpG sites are included. [F] Density curves of the average genome-wide DNA methylation level 
estimates for each NHP species. Curves show the expected bimodal distribution in which many of the CpG sites in the genome are either hypomethyl-
ated or hypermethylated.

https://doi.org/10.1371/journal.pgen.1011667.g004

https://doi.org/10.1371/journal.pgen.1011667.g004
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Biological analyses performed with TMS, EPIC, and RRBS data reveal similar results

Experiment 9: Epigenetic age and tissue-dependent patterns compared across technologies.  Thus far we 
have compared DNA methylation levels measured with TMS versus other technologies; if these measurements are 
robust across platforms, then power to detect biological patterns should also be similar. We thus asked whether data 
generated from paired samples, but using different technologies, could recapitulate 1) epigenetic age predictions using 
DNA methylation-based clock algorithms [7,69–73] and 2) tissue-dependent methylation signatures when comparing 
diverse organ systems. For analysis #1, we used the 55 VUMC cohort samples with paired EPIC and TMS data (focusing 
on 682,295 CpG sites passing filters and common to both technologies). For analysis #2, we used the 96 rhesus 
macaque samples with paired RRBS and TMS data (focusing on 391,758 CpG sites passing filters and common to both 
technologies).

For analysis #1, we observed a high correlation between epigenetic age estimates derived from TMS and EPIC data 
(Fig 5A; average R2 = 0.91). This agreement was high across a variety of existing epigenetic clock algorithms. For analysis 
#2, we found that effect size estimates of tissue dependency (for example, from linear models comparing DNA methyl-
ation levels in liver to all other tissues) were very similar genome-wide when applied to TMS versus RRBS data (Fig 5B 
and 5C). Additionally, we confirmed that sites identified as significantly associated (FDR < 5%) with a given tissue in RRBS 
versus TMS data overlapped more than expected by chance (Fig 5D). Together, these results support the ability of TMS 
data to uncover biological patterns in similar ways as other technologies.

Discussion

We developed and benchmarked a multiplexed, cost-effective version of the TMS protocol and applied it to human 
populations from the US, Bolivia, and Malaysia as well as multiple NHP species. We recommend an optimal protocol for 
future work (96-plex, 200ng input, 65°C annealing, no methylation enhancer, enzymatic fragmentation), but found that 
data quality remained high across plexing strategies, input amounts, and protocol modifications. Importantly, the 96-plex 
version of the TMS protocol—including sequencing to achieve ~ 25x coverage per CpG site on the Illumina NovaSeq X—
can currently be performed for ~USD 80 per sample (with roughly half being reagents and labor, and the other half being 
sequencing on the NovaSeq X platform; S1 Table). Relative to the commonly used EPIC array for human studies, this rep-
resents massive savings enabling larger-scale, population-based studies. We recognize that the total cost of TMS will vary 
by the amount of sequencing performed, and we provide simulations (and modifiable code) based on real TMS coverage 
distributions for users to explore the impact of coverage on power for a given study design. For example, we find that with 
a sample size of n = 100, moderate differences in methylation (e.g., 20%) can be identified with high power at relatively low 
read depths (e.g., 20x), while detecting small differences would require higher read depths. However, the relative impact 
of coverage on power diminishes at higher sample sizes. Researchers will thus need to tailor their sequencing plan based 
on both their expected effect size and the number of samples in hand (S3 Fig).

We found high concordance between TMS-derived DNA methylation levels and those derived from other commonly 
used methods—namely the EPIC array, WGBS, and RRBS. WGBS is the gold standard for comprehensive DNA meth-
ylation measurement, but is prohibitively expensive for most studies given the breadth of sequencing (to cover the whole 
genome) and the necessity for deep sequencing (to achieve high levels of precision) [50]. RRBS has filled in as a more 
cost-effective alternative, but due to the stochastic nature of the Msp1 digestion followed by size selection, not all CpG 
sites are reliably covered across individuals and missing data can impede downstream analyses (S14 Fig). We note that 
variation in coverage (and thus precision) across CpG sites will be an issue, to some degree, for any sequencing-based 
technology. As a result of these challenges, microarray-based methods have become the most commonly used approach 
in human genomics. Consequently, many popular bioinformatics pipelines and specialized algorithms for DNA methylation 
data (e.g., epigenetic clocks or cell type deconvolution [74,75]) are currently keyed to microarrays. While DNA methylation 
levels derived from TMS are strongly correlated with the EPIC array, it is important to keep in mind that: 1) a small subset 
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of sites are not covered by both technologies, and 2) because microarrays output beta values (equivalent to methylated 
signal/(total signal + an offset)), the relationship between TMS- and EPIC-derived values cannot be exactly 1:1. We caution 
that care will thus be needed when applying existing microarray-based algorithms to TMS data, though our initial attempts 
at doing so with epigenetic clock algorithms do seem to perform well.

The study of DNA methylation in NHP species is deeply important to our understanding of gene regulatory evolution 
[76–78], comparative aging [67,68,79,80], and environmental impacts on phenotype [68,81]. For example, both cap-
tive and field-based NHP studies have strongly contributed to our understanding of how social and ecological inputs 
influence fitness-related traits through changes in DNA methylation [82,83]. These studies have sometimes relied on 
microarrays (e.g., the Mammalian Methylation Array [36,84–86] or the application of human arrays to NHP species [87–
89]). However, given the high costs of arrays, a large proportion of previous work has relied on RRBS [68,80,81,83]. 
Although RRBS is easily adapted for non-human species, TMS can work with smaller amounts of input DNA than 
bisulfite-based protocols [42], which can be critical for studies of wild or endangered species. While TMS uses capture 

Fig 5.  TMS recapitulates epigenetic age predictions and tissue-dependent effects identified via other technologies. [A] Pearson’s correlation 
coefficient comparing epigenetic age predictions for five PC-based epigenetic clocks run on TMS versus EPIC v2 array data from the VUMC cohort 
(n paired samples = 55). All correlations were significant following multiple hypothesis testing (FDR < 5%). [B] Correlation between standardized effect 
sizes, estimating liver-specific effects, using RRBS versus TMS data (n paired rhesus macaque samples = 96). To derive effect size estimates, models 
were run comparing the liver to all other tissues. Each point represents the effect size for a given CpG site common to both datasets. [C] Pearson’s 
correlation coefficient comparing effect sizes for estimates of tissue-specific effects using TMS versus RRBS data (n paired rhesus macaque samples 
per tissue = 96). Separate models were run for each tissue, comparing the focal tissue on the x-axis to all other other tissues to identify tissue-specific 
effects. All correlations were significant following multiple hypothesis testing (FDR < 5%). [D] Degree of enrichment (represented as an log2 odds ratio 
from a Fisher’s Exact test), between CpG sites identified as tissue-specific in TMS versus RRBS data using matched samples. Dashed line represents 
no enrichment and error bars represent confidence intervals.

https://doi.org/10.1371/journal.pgen.1011667.g005

https://doi.org/10.1371/journal.pgen.1011667.g005
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probes designed from the human genome, NHPs share high levels of sequence similarity, which we show is sufficient 
to reliably capture 2–3 million CpG. Though not all ~ 4 million CpG sites are captured, TMS still represents a consistent 
and cost-effective approach relative to the alternatives. Notably, we find that TMS is effective in both catarrhine (mon-
keys of Africa and Asia) and platyrrhine (monkeys of Central and South America) species, suggesting it may be effec-
tive in other members of these clades for capturing conserved regions. One potential issue that requires further study 
is that the probes (which are designed from human genetic variation) do not specifically avoid or take into account 
within-species polymorphisms.

To show that TMS data could detect expected biological patterns, in ways that are comparable to existing technologies, 
we performed the same analyses of epigenetic age estimation and tissue-specificity in matched TMS, EPIC, and RRBS 
data, respectively. From these analyses we found that the epigenetic ages estimated with TMS versus EPIC data were 
highly correlated as were genome-wide estimates of tissue specific patterns from TMS versus RRBS data. The potential 
portability of epigenetic clock algorithms is particularly encouraging, as this approach is becoming increasingly popular 
for measuring biological age [90–92], and will be exciting to pair with cost-effective methods going forward. Together, our 
optimized TMS protocol has the potential to add value and enable larger-scale studies in the many fields that query DNA 
methylation patterns, such as genetic medicine, developmental biology, evolutionary biology, anthropology, public health, 
geroscience, and more.

Methods

Ethics statement

For the Tsimane participants, informed consent was collected at three levels: by the individual (formal written con-
sent), by the community, and by the Tsimane Gran Consejo (Tsimane governing body). All study protocols, including 
the generation of DNA methylation data, were approved by the Institutional Review Boards of the University of New 
Mexico (#07–157), the University of California Santa Barbara (#3-21-0652), and Universidad Mayor San Simon, 
Cochabomba.

For the Orang Asli participants, informed consent was also collected at multiple levels: first by first describing the 
project to the community as a whole and seeking the permission of community leaders, and subsequently through 
individual-specific review of the protocol and formal written consent. The study protocol, including the generation of DNA 
methylation data, was approved by Vanderbilt University (IRB #212175) as well as the Malaysian Medical Research 
Ethics Council.

For the rhesus macaque samples, the study protocol was approved by the Institutional Animal Care and Use Com-
mittee through the University of Puerto Rico’s Caribbean Primate Research Center (IACUC #A400117). For the gelada 
samples, the study protocol was approved by the Institutional Animal Care and Use Committees at the University of 
Washington (protocol 4416-01) and Arizona State University (20–1754 R) along with approval from the Ethiopian Wildlife 
and Conservation Agency. For the tufted capuchin samples, the study protocol was approved by the Institutional Animal 
Care and Use Committee at the Georgia State University (protocol A20018).

Study populations, sample collection, and DNA extraction

Data generation drew on previously collected samples from multiple human and non human primate populations. A brief 
description of each population is provided below.

Tsimane of Bolivia.  The Tsimane are an Indigenous horticulturalists population spread across >90 villages in the 
Bolivian lowlands and totaling approximately 17,000 people [52]. We extracted DNA from 192 venous whole blood 
(WB) samples collected between the years of 2010–2021 as part of the Tsimane Health and Life History Project 
(THLHP). The THLHP has continuously collected demographic, behavioral, environmental, and health data along 
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with the provision of medical services for over two decades [93]. Samples were frozen in liquid nitrogen, transferred 
on dry ice to Arizona State University, and stored at -80°C prior to analysis. The sample set for this project included 
103 females and 89 males, with a mean age of 54.3 years old (range 18.0–83.6 years old) (see Table 1). Genomic 
DNA was extracted using the Zymo Quick-DNA 96 kit (Zymo Research #D3012) following the manufacturer’s 
instructions.

Orang Asli of Peninsular Malaysia.  The Orang Asli consist of ~19 ethnolinguistic groups and a total population 
of ~210,000 people [58]. They traditionally subsist on a mixture of hunting, gathering, fishing, small-scale farming, 
and trade of forest products [94,95]. We extracted DNA from 88 white blood cell (WBC) samples that were collected 
in 2023 as part of the Orang Asli Health and Lifeways Project (OA HeLP) [58]. Samples included in data generation 
were derived from venous blood draws followed by washing with QIAGEN PureGene red blood cell lysis. Samples 
were stored in liquid nitrogen upon collection, and at -80C for longer term storage. The Orang Asli sample included 
46 females and 42 males, with a mean age of 35.3 years old (range 18–78 years old; Table 1). Genomic DNA was 
extracted using the Zymo Quick-DNA/RNA MagBead kit (Zymo Research #R2131) following the manufacturer’s 
instructions.

Vanderbilt University Medical Center cohort.  We were granted access to de-identified EPIC array data 
(Infinium MethylationEPIC v2.0 Kit) and TMS data from 55 paired human whole blood samples. These samples  
were sourced from a healthy cohort recruited through the Vanderbilt University Medical Center (VUMC) in  
Nashville, TN USA. Due to IRB restrictions, demographic data or other metadata were not available for these 
samples.

Rhesus macaques.  We obtained extracted DNA from rhesus macaque tissue samples (n = 96) collected by the 
Cayo Biobank Research Unit in partnership with the University of Puerto Rico’s Caribbean Primate Research Center 
(CPRC) [96–100]. Beginning in 2016, samples were collected from individuals living on the island of Cayo Santiago, 
an NIH-managed free-range colony of provisioned rhesus macaques. Specifically, as part of an ongoing population 
management plan designed by CPRC, select individuals were culled and tissues from all major organ systems were 
systematically harvested, stored in a fixative buffer, and frozen at -80C. This data set consists of samples from six 
different tissue types: adrenal, heart, kidney, lung, liver, and spleen, with 16 samples from each type and samples 
coming from 23 unique individuals (S3 Table). This dataset includes samples from 11 females and 12 males, ages  
3.2 to 19.9 years old (mean 10.6 years old), collected from 2016–2019 (Tables 1 and S3). Genomic DNA was 
extracted using the Zymo Quick-DNA/RNA MagBead kit (Zymo Research #R2131) following the provided 
manufacturer’s protocols.

Geladas.  We extracted DNA from whole blood from 68 geladas; 21 were female and 47 were male and all were 
considered adult (i.e., over 4 years old, the minimum average age of reproductive maturation in this species [101])  
(Table 1). Gelada samples were collected as part of the Simien Mountains Gelada Research Project (SMGRP) which, 
since 2017, has carried out annual capture-and-release campaigns to collect morphometric data and whole blood 
samples from wild Ethiopian geladas [102]. Samples were stored in liquid nitrogen upon collection, and at -80C for longer 
term storage. Genomic DNA was extracted using the Qiagen DNeasy Blood & Tissue kits (Qiagen #69581) following the 
provided protocols.

Tufted capuchins.  Blood was collected from individuals in the captive tufted capuchin monkey colony at Georgia 
State University in January 2023. Of the 28 capuchins, 19 were female and 9 were male with an average age of 19.4 
years old (range 9–41 years old; Table 1). A trained veterinarian anesthetized the monkeys using 13 mg/kg Ketamine, 
delivered intramuscularly. Whole blood samples were collected during the monkeys’ annual physicals, stored at 4°C upon 
collection, and shipped to Arizona State University where they were flash frozen into 0.5mL aliquots and stored at -80°C 
until used for analysis. DNA was extracted using the Qiagen DNeasy Blood & Tissue kits (Qiagen #69581) following the 
manufacturer’s protocols.
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Overview of TMS library preparation

We used the Qubit dsDNA assay to determine the quantity of all extracted DNA. DNA libraries were normalized and 
prepared using the NEBNext Enzymatic Methyl-seq kit (P/N: E7120L) following a modified version of the manufac-
turer’s protocol that included 9 cycles of PCR for the final library amplification followed by a 0.65X bead cleanup. 
To prepare for the hybrid capture reaction, the total DNA input requirement (2000ng in this case) was divided by 
the total number of samples being pooled (12, 24, 48, or 96 as will be discussed below). In the 96-plex experiment, 
for example, 84ng of DNA from each sample was pooled totaling 8ug, and ¼ of the volume was used for the hybrid 
reaction and captured using the Human Methylome panel from Twist Biosciences following the manufacturer’s 
instructions (P/N: 105521). The final post-capture PCR reaction was split into 2 reactions per pool and cleaned with a 
1X bead cleanup and then combined. Pool quality was assessed post-hybridization using the Agilent Bioanalyzer and 
quantified using a qPCR-based method with the KAPA Library Quantification Kit (P/N: KK4873) and the QuantStudio 
12K instrument.

Prepared library pools were sequenced on the NovaSeq 6000 at the Vanderbilt Technologies for Advanced Genomics 
(VANTAGE) Core. We used 150 bp paired-end sequencing and generally targeted 30-50M paired-end reads per sample. 
Real Time Analysis Software (RTA) and NovaSeq Control Software (NCS) (1.8.0; Illumina) were used for base calling. 
MultiQC (v1.7; Illumina) was used for data quality assessments. For each sample, we applied the Illumina DRAGEN 
Methylation Pipeline v4.1.23 using the custom bed file from Twist Biosciences. The deliverables from DRAGEN consist of 
FASTQs, bams, cytosine reports (which include counts of methylated and unmethylated reads per CpG site), and methyl 
and mapping metric reports.

TMS library preparation for experiments 1 & 2: Varying multiplexing strategies and input amounts

To determine whether TMS can be effectively multiplexed beyond the recommended 8-plex, we used 96 Tsimane sam-
ples to test four different multiplexing strategies during capture: 12-, 24-, 48-, and 96-plex. To test whether TMS is robust 
to DNA input amounts, we tested five input amounts: specifically, 25, 50, 100, 200, and 400 ng of sample were used as 
input into the EM-seq library prep. Here, we kept the plexing strategy constant (12-plex) and used three Tsimane samples, 
each represented three times within each pool and included three replicates of a control sample (HG01879 from the 1000 
Genomes Project) [103].

TMS library preparation for experiments 3 & 4: Optimizing capture efficiency and DNA fragmentation  
strategies

To optimize the capture efficiency of Twist target sites, we tested the use of two different annealing temperatures–65° and 
68° C–along with the use of a methylation enhancer (ME)– produced by Twist Biosciences (Catalog #103557) consisting 
of Tris EDTA buffer to block the binding of off-target probes thereby improving on-target capture efficiency. The specific 
combinations we explored were: testing a 65°C annealing temperature with 0uL (n = 192), 2uL (n = 96), and 4uL (n = 96) of 
ME and testing a 68°C annealing temperature with 0uL (n = 96) and 2uL (n = 192) of ME. These experiments were con-
ducted with 96-plexed Tsimane samples (n = 192), and using 200 ng of sample input.

Next, we tested the use of an enzymatic fragmentation method to replace the Covaris (LE220) mechanical frag-
mentation approach. Mechanical fragmentation is known to decrease library quality through damage to DNA; however, 
enzymatic fragmentation is not currently recommended by the TMS protocol. To compare these approaches, we per-
formed the optimized TMS with enzymatic fragmentation using 4uL of NEBNext UltraShear (NEB #M7634S/L) for 10 
or 20 minutes. This experiment was conducted using 96-plexed samples from the Orang Asli (n = 88) and using 200 ng 
of sample input.
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TMS and RRBS library preparation for experiments 7 and 8

To evaluate the efficacy of optimized TMS on three NHP species—macaques, geladas, and capuchins—we applied the 
96-plex protocol design from experiment 1 with 200 ng input. To compare rhesus macaque TMS to RRBS, we generated 
RRBS libraries using 150 ng of DNA input in combination with 1ng of lambda phage DNA and 1uL of Msp1—a digestive 
enzyme which cuts CCGG nucleotide motifs. Next, using NEBNext Ultra II reagents, we performed end repair and adapter 
ligation to the DNA fragments produced by Msp1 digestion. We then performed bisulfite conversion on the fragments 
using the EZ-96 DNA Methylation Lightning MagPrep kit (Zymo Research #D5046) following the manufacturer direc-
tions. The samples were then PCR amplified for 16 cycles with unique dual indexed sequencing primers. We selected for 
180–2000 bp fragments and sequenced on an Illumina NovaSeq S2 flow cell with 2x51bp sequencing [80,104].

Low-level processing of TMS data

For experiments 1, 2, 7, and 8, we used a custom bioinformatics pipeline to process all FASTQ files into counts of methyl-
ated versus unmethylated cytosines at each CpG site. For experiments 3, 4, 5, and 6, we used Illumina’s Dynamic Read 
Analysis for GENomics (DRAGEN) pipeline [105] to process all FASTQ files into counts of methylated versus unmethyl-
ated cytosines at each CpG site. Importantly, both our custom pipeline and DRAGEN follow the same general steps and 
rely on the Bismark suite [106], making them highly comparable. We also processed 7 samples from experiment 4 using 
both methods to empirically confirm that our custom pipeline and the Illumina DRAGEN pipeline produced near identical 
results (S15 Fig).

For our custom pipeline, we first trimmed adapters using Trimmomatic (version 0.39) [107] and TrimGalore (version 0.6.6) 
[108] for human and NHP samples, respectively. Following trimming, we used Bismark (version 0.24.0) [106] to map reads to 
each species’ respective genomes (hg38 for human, mmul10 for rhesus macaque, cimit for capuchin, and tgel1 for gelada). 
We retained only uniquely mapped reads and used the methylation extractor function within Bismark to extract counts of 
methylated versus unmethylated cytosines at each cytosine. These files were further filtered for CpG contexts only.

For all samples, run through either the custom or DRAGEN pipeline, we extracted two measures of data quality that 
are automatically calculated by Bismark: the percent of reads that mapped uniquely to the reference genome and the 
average methylation percentage for cytosines in a CHH context. The latter value serves as a commonly used estimate of 
the efficiency with which a given protocol converts unmethylated cytosines to thymine, because cytosines located outside 
of CpG contexts are extremely unlikely to be methylated in the mammalian genome [109,110]. Estimates of CHH meth-
ylation were extracted from an automatically generated report file when using Bismark to align the trimmed FASTQ files 
to the reference genome. For experiments 1 and 2, we tested whether multiplexing strategy and input amount impacted 
mapping efficiency and percent CHH methylation using a one-way ANOVA test, followed by a pairwise t-test in the case of 
significance, with the ‘aov’ and ‘pairwise.t.test’ functions in the ‘stats’ R package [111].

For each study, we used the BSseq R package [112] to compile count matrices (derived from our custom pipeline or 
DRAGEN) across samples and to perform region, coverage, and missingness filtering. For experiments 1, 3, 4, 5, and 6 
we used built-in functions in BSseq to filter for sites within the probes regions (+/- 200 bp) and for sites covered at>5X in 
>75% of samples. We made slight modifications to this filtering pipeline for other experiments. For experiment 2, where 
n = 3 for each input amount, we relaxed our missingness filter to sites with at least one read observed in at least ⅔ sam-
ples. For experiment 7, which focused on NHP genomes for which the probe set coordinates (which are provided in hg38) 
are irrelevant, we did not perform region filtering. The number of sites analyzed for each experiment (reported in the main 
text and in S4 Fig) therefore varies slightly depending on sample size, sequencing coverage, and other factors that impact 
which CpG sites passed our filters.

To confirm the fidelity of optimized TMS, we also checked whether CpGs captured by the protocol were distributed as 
expected throughout different genomic regions (e.g., promoters, enhancers) and that the average methylation levels in 
different genomic regions were as expected. To do so, we annotated each CpG site by whether it fell into a gene body, 
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promoter, or non-genic region, and by chromatin state. We used hg38 gene body coordinates from Ensembl’s ‘biomaRt’ 
package in R, and we defined promoter regions as the 2000 bp region upstream of TSSs. We annotated CpGs as falling 
in chromatin states as defined by hg38 ChromHMM annotations from NIH’s Roadmap Epigenomics Project [54]. We then 
counted the number of CpG sites that fell in each region (Fig 2C) and evaluated the median methylation across samples 
(Fig 2D).

Quantifying capture efficiency

A subset of our experiments sought to understand and optimize two measures of efficiency of the hybrid capture step: 1) 
how many of the expected CpG sites from the probe set passed our filtering parameters and were thus analyzable and 2) 
how many of the reads we generated for a given sample were on-target and putatively captured by the probe set, rather 
than representing off-target randomly sequenced DNA fragments that do not contribute to analyzable data as they are 
often sparsely shared between samples. For #1, we used the bedtools (version 2.28.0) [113] intersect command to deter-
mine the proportion of CpG sites that are within +/- 200 bp with at least 1 probe [using a bed file available on the Twist 
Biosciences website (https://www.twistbioscience.com/resources/data-files/twist-human-methylome-panel-target-bed-file)]. 
For #2, we used the bedtools function bamtobed to convert the mapped reads for each sample into a bed file; because we 
used a paired end sequencing strategy, each bed coordinate included a fragment start position from R1 and a fragment 
end position from R2. We then used the bedtools intersect command to determine the proportion of mapped read pairs 
that are within 200 bp of at least 1 Twist probe.

Simulating TMS data to estimate power across coverages, effect sizes, and sample sizes

To understand what level of coverage is necessary to detect particular effect sizes in different sample sizes, we conducted 
a power analysis using simulated data based on the true coverage distribution of 1,000 sites in our TMS dataset, drawing 
with replacement to simulate sample sizes of n = 100, 200 and 400 (following the methods in [49,59]). We then assigned 
each sample a binary predictor variable (0 or 1), estimated methylation level differences between groups for a given effect 
size, and simulated the number of methylated counts per sample we would observe under this scenario by sampling from 
a binomial distribution (given the number of total counts and the probability of a count being methylated). We simulated 
data for effect sizes ranging from a 0–20% difference in methylation levels between groups and calculated power as the 
proportion of sites in which the predictor variable had a significant effect on methylation at a nominal p-value threshold of 
0.001. We ran this analysis 3 times, first using the true mean coverage of our dataset (~20x), then again simulating cover-
age of 40x and 80x by multiplying the total counts of each site by 2 and 4, respectively.

Comparing DNA methylation measurements between TMS, the EPIC array, and WGBS

We used our filtered BSSeq object from experiment 5 to compare to data from the EPIC array generated for 55 paired 
human samples (average number of CpG sites measured with EPIC = 936,280; average call rate = 0.999). We downloaded 
the EPIC CpG coordinates from the Illumina website and merged with the TMS CpG locations, resulting in a shared data-
set of 682,295 CpG sites passing filters and common to both technologies. We then performed two analyses to under-
stand consistency. First, we calculated the average per-site methylation level across all samples included in the TMS or 
EPIC array datasets, respectively. We then ran a linear model testing the relationship between the two sets of average 
methylation levels using the ‘lm’ function in the ‘stats’ package in R. Second, we used the ‘lm’ function to estimate the R2 
value comparing per-site methylation levels for estimates derived from each technology for a given individual (i.e., not 
averaged across the dataset). This resulted in a distribution of 55 R2 values. Because all humans share canonical meth-
ylation patterns, we also compared this distribution to a distribution of 55 R2 values derived from the same analysis after 
sample identity was permuted. We used the ‘t.test’ function in the ‘stats’ package in R to ask whether these distributions 
were significantly different.

https://www.twistbioscience.com/resources/data-files/twist-human-methylome-panel-target-bed-file
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We used a very similar strategy to compare ~ 30x WGBS data generated for six paired Tsimane samples with TMS data 
generated from experiment 1 (96-plex, 200 ng input). First, we performed low level processing of the WGBS data using 
Illumina’s DRAGEN pipeline and merged this with our filtered TMS data, resulting in 3,078,771 CpG sites common to both 
datasets. We calculated the average methylation level across samples reported for each site and technology and ran a lin-
ear model using the ‘lm’ function in the ‘stats’ package in R to calculate the R2 value. We did not compare individual-based 
R2 values to permuted values for this experiment, given the small number of individuals.

Understanding TMS performance in NHP species and comparing DNA methylation measurements between TMS 
and RRBS

To estimate the number of CpG sites that we expected to recover when applying the human probe set to each NHP 
species, we converted the probe bed file to a FASTA file using the bedtools command ‘getfasta’ [113] and the hg38 refer-
ence genome. We then used Bismark to map the FASTA file to each non-human primate’s respective genome. From the 
mapped bam file, we used the ‘bamToBed’ function in bedtools to extract coordinates for the mapped probes and to add 
a + /- 200 bp offset. Finally, we applied the ‘getfasta’ function in bedtools to extract the sequence for the mapped regions 
(plus the 200 bp buffer) from the non-human primate genome and to count the number of CpG sites in this region set.

Similar to the comparisons between TMS and the EPIC array, we used paired RRBS data for the 96 rhesus macaque 
samples to directly compare methylation data generated using TMS versus RRBS. To do so, we processed the RRBS 
data using the same custom pipeline and filtering parameters described for TMS data, with the only modification being 
that we used the ‘—rrbs’ parameter in TrimGalore to remove unmethylated cytosines artificially introduced during library 
preparation from the 3’ end of fragments. We merged the filtered TMS and RRBS datasets, resulting in 721,766 CpG sites 
common to both technologies. As described for the TMS-EPIC array comparison, we then 1) calculated the average per-
site methylation level across all samples included in each dataset and compared these vectors using linear models and 
2) estimated the R2 value for methylation level estimates derived from each technology for a given individual, and used a 
t-test to compare this distribution to a distribution for the same analysis where sample identity was permuted (S16 Fig).

Testing for tissue-specific DNA methylation patterns and estimating epigenetic age using data from different 
technologies

First, we compared epigenetic age predictions from paired samples that were sequenced on different platforms. We 
estimated epigenetic age from the PC-based versions of five well-established epigenetic clocks, including the Horvath 
multi-tissue clock, Hannum blood clock, PhenoAge clock, and telomere length clock. The PC-based versions of these 
clocks have much higher reliability and less susceptibility to technical noise than the original CpG-site level clocks [73]. 
We estimated epigenetic age from these clocks using the PC-Clocks R package [114] and calculated the Pearson’s cor-
relation coefficient for estimates from samples generated with TMS versus the EPIC array.

Second, we compared tissue-specific effect size estimates between samples generated with RRBS and TMS. Specifi-
cally, we asked whether tissue type significantly (FDR < 5%) predicted DNA methylation among the multi-tissue macaque 
data for each technology, using beta binomial models implemented in the R package ‘aod’. We performed these analyses 
iteratively to compare a given tissue to all other tissues (for example, comparing liver versus all other tissues to estimate 
liver-specific effects). We limited this analysis to variably methylated CpG sites (median methylation <90% or >10%).

Supporting information

S1 Table.  Itemized cost-per-sample breakdown of TMS. 
(XLSX)

S2 Table.  Read depth and metadata per sample, broken down by experiment and condition. 
(XLSX)
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S3 Table.  Comparison of mapping efficiency with varying DNA input amounts. P-values generated from pairwise 
t-tests comparing the percentage of reads that were uniquely mapped to the human genome from sequencing data gener-
ated using the TMS protocol with varying amounts of input DNA. * represents a significant (p < 0.05) difference in mapping 
efficiency between conditions.
(XLSX)

S4 Table.  Comparison of CHH methylation with varying plexing strategies. P-values generated from pairwise t-tests 
comparing the percentage of cytosines in a CHH context marked as methylated (an estimate of conversion efficiency).  
* represents a significant (p < 0.05) difference in percent CHH methylation between conditions.
(XLSX)

S5 Table.  Comparison of CHH methylation with varying input amounts. P-values generated from pairwise t-tests 
comparing the percentage of cytosines in a CHH context marked as methylated (an estimate of conversion efficiency).  
* represents a significant (p < 0.05) difference in percent CHH methylation between conditions.
(XLSX)

S6 Table.  Number of captured on-target sites and average site-based coverage for each plexing strategy. Sites 
are filtered for those within the Twist probe set and covered at>5x coverage in >75% of samples. The average number 
of reads is provided as the total, such that the number of paired end reads would be ½ the reported value. 200ng of DNA 
was used for each sample for all plexing experiments.
(XLSX)

S7 Table.  Number of captured on-target sites and average site-based coverage for each input amount. Sites are 
filtered for those within the Twist probe set and covered at>5x coverage in >75% of samples. The average number of 
reads is provided as the total, such that the number of paired end reads would be ½ the reported value. All input experi-
ments were pooled using the 12-plex strategy.
(XLSX)

S8 Table.  Percent of probes represented for each plexing strategy. The percentage of Twist target probes 
(n = 551,803) covered by at least one read for each plexing strategy.
(XLSX)

S9 Table.  Percent of probes represented for each input amount. The percentage of Twist target probes (n = 551,803) 
covered by at least one read for each input amount.
(XLSX)

S10 Table.  Correlation in average methylation at each site between plexing strategies. R2 values generated using 
linear modeling to compare average site-level methylation between plexing experiments. Average site-level methylation 
was calculated by averaging the percent methylation for each site across all samples within a given plexing strategy and 
comparing these with average site-level methylation within shared sites in an alternate plexing strategy. All sites were 
filtered for>5X coverage in >75% of samples.
(XLSX)

S11 Table.  Correlation in average methylation at each site between input amounts. R2 values generated using linear 
modeling to compare average site-level methylation between input amount experiments. Average site-level methylation 
was calculated by averaging the percent methylation for each site across all samples within a given input amount exper-
iment and comparing with average site-level methylation within shared sites in an alternate input amount experiment. All 
sites were filtered for>5X coverage in >75% of samples.
(XLSX)

http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1011667.s003
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1011667.s004
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1011667.s005
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1011667.s006
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1011667.s007
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1011667.s008
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1011667.s009
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1011667.s010
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1011667.s011


PLOS Genetics | https://doi.org/10.1371/journal.pgen.1011667  May 22, 2025 20 / 27

S12 Table.  Comparison of percent off-target reads with varying protocol modifications. P-values generated from 
pairwise t-tests comparing the percentage of the total reads that were not associated with a Twist target probe (within +/- 
200 bp) for each capture efficiency experiment. 65C/68C refers to annealing temperature and 0uL/2uL/4uL ME refers to 
volume of methylation enhancer. * represents a significant (p < 0.05) difference in the percent of probes captured between 
conditions.
(XLSX)

S13 Table.  Comparison of probe capture with varying protocol modifications. P-values generated from pairwise 
t-tests comparing the percentage of Twist target probes covered by at least one read for each capture efficiency exper-
iment. 65C/68C refers to annealing temperature and 0uL/2uL/4uL ME refers to volume of methylation enhancer. * rep-
resents a significant (p < 0.05) difference in the percent of probes captured between conditions.
(XLSX)

S14 Table.  Number of captured on-target sites and average site-based coverage for each capture efficiency 
experiment. Sites are filtered for those which are covered at>5x coverage in >75% of samples.
(XLSX)

S15 Table.  Correlation in methylation across DNA fragmentation methods. R2 values generated using linear 
modeling to compare site-specific methylation for 3 samples, each processed with 3 different fragmentation methods- 
mechanical, enzymatic for 10 minutes, and enzymatic for 20 minutes. All sites were filtered for>5X coverage in >75% of 
samples.
(XLSX)

S16 Table.  Rhesus macaque multi-tissue dataset. Age, sex, and tissue types for each individual in the rhesus 
macaque multi-tissue dataset, used to assess the function of TMS in a NHP with a direct comparison to RRBS data gen-
erated from these same samples (see also S8 Fig).
(XLSX)

S1 Text.  Supplementary methods. 
(DOCX)

S1 Fig.  Comparison of CHH methylation across experiments. Percentage of cytosines in a CHH context marked as 
methylated (an estimate of conversion efficiency) for varying (A) plexing strategies, and (B) input amounts. The dashed 
line refers to 1% CHH methylation and the solid line refers to 5% CHH methylation, a common cut off indicative of high 
levels of unmethylated cytosine conversion.
(TIFF)

S2 Fig.  Distribution of average per-site coverage and average paired-end reads broken down by experiment. 
(A) Average coverage per CpG site passing filters in a given experiment. Prior to calculations, CpG sites were filtered to 
include only sites within 200 bp of target probes and those with>5X coverage in more than 75% of samples. (B) Average 
read depth, in terms of paired-end reads, generated per sample in each experiment.
(TIFF)

S3 Fig.  Relationship between effect size, coverage, sample size, and power. Power analyses conducted on data for 
1,000 simulated CpG sites (per sample size, effect size, and coverage combination) using the coverage distributions of 
observed, 96-plex TMS data. Lines represent the power to detect a 0–20% difference in methylation between two groups 
at a nominal p-value threshold < 0.001. Colors represent different levels of mean coverage per site (20x, 40x, and 80x) and 
facets represent sample sizes of n = 100, n = 200, and n = 400.
(TIFF)
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S4 Fig.  Number of on-target CpG sites represented in each experiment. Number of CpG sites within 200 bp of target 
probes after filtering for>5X coverage in more than 75% of samples by experiment. Colors are representative of each 
experiment which are defined in Fig 1C.
(TIFF)

S5 Fig.  Correlation in average site-level methylation for varying fragmentation methods. Site-level methylation 
averaged across 3 samples processed using mechanical fragmentation, enzymatic fragmentation for 10 minutes, and 
enzymatic fragmentation of 20 minutes. Each point represents a site measured across both fragmentation methods and 
R2 values were generated using linear modeling.
(TIFF)

S6 Fig.  Average and median coverage for on-target sites when mapped read files are subset to varying degrees. 
We subset the mapped read files for each sample (n = 88) included in our enzymatic fragmentation experiment (experi-
ment 4) to include a random subset of 25, 50, or 75% of the total reads. We calculated the average (A) and median (B) 
coverage for on-target sites (y-axis) and observed a linear relationship between coverage and the number of subset reads 
(x -axis), which is useful for estimating what sequencing depth per sample will be needed to obtain various degrees of 
coverage.
(TIFF)

S7 Fig.  Correlation in average DNA methylation levels between TMS and EPIC data split by (A) EPIC v2 Type I 
and (B) Type II probes. DNA methylation levels (A: n = 115,982 matched CpG sites; B: n = 575,401 matched CpG sites) 
averaged across 55 VUMC samples processed using TMS and the EPIC v2 array. Each point represents a site measured 
across both processing methods and R2 values were generated using linear modeling.
(TIFF)

S8 Fig.  Correlation in average DNA methylation levels between TMS and EPIC data split by different subsets 
of the genome. For samples processed using both TMS and the EPIC array (n = 55 VUMC samples), we assessed 
the correlation in site-level average methylation levels for (A) hypomethylated regions (<50% average methylation); 
(B) intermediately methylated regions (average methylation above 10% and below 90%); (C) hypermethylated regions 
(>50% methylation); (D) UCSC-annotated CpG islands; (E) UCSC-annotated CpG shores (i.e., regions within 2kb of the 
boundaries of a CpG island); and (F) UCSC-annotated CpG shelves (regions within 2kb and 4kb of the boundaries of a 
CpG island R2 values were calculated using linear modeling; sample sizes represent the number of CpG sites included 
in each panel.
(TIFF)

S9 Fig.  Correlation in site-level methylation between TMS and EPIC array data after sample permutation. For 
samples processed using both TMS and the EPIC array, we assessed the correlation in site-level methylation for variable 
sites (methylation >0.1 and <0.9) and all sites after permuting sample ID randomly. R2 values were generated using linear 
modeling.
(TIFF)

S10 Fig.  Average methylation and coverage across technologies. (A) Density plot showing the average methylation 
of a site (i.e., across samples) for filtered (>5X coverage in >75% of sites) sites captured between the three technologies 
(726,597 EPIC Array sites; 4,990,351 TMS sites; and 5,000,659 WGBS sites). Sites were not matched between the three 
technologies. (B) Average coverage per site of sites captured by WGBS after filtering for>5X coverage in >75% of sam-
ples. Median average coverage is 24.0X.
(TIFF)
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S11 Fig.  Number of individuals from which different numbers of tissues were included in the rhesus macaque 
multi-tissue dataset. The majority of individuals had 4 + tissues represented in the dataset.
(TIFF)

S12 Fig.  Comparison of CHH methylation across experiments testing optimized TMS in three NHP species. 
Percentage of cytosines in a CHH context marked as methylated (an estimate of conversion efficiency) following 
optimized TMS using genomic DNA from capuchins, geladas, and macaques. The dashed line refers to 1% CHH 
methylation and the solid line refers to 5% CHH methylation, a common cut off indicative of high levels of cytosine 
conversion.
(TIFF)

S13 Fig.  Correlation in average site-level DNA methylation estimates between TMS and RRBS. Site-level DNA 
methylation estimates averaged across 96 rhesus macaque samples processed using TMS and RRBS. Each point rep-
resents a site measured across both fragmentation methods and R2 values were generated using linear modeling. RRBS 
enriches for CpG dense regions of the genome, which tend to be hypomethylated.
(TIF)

S14 Fig.  Number of samples for which a site is covered across for datasets generated using (A) RRBS and (B) 
TMS. Sites filtered for>5X coverage in >75% of samples processed using a given technology. A greater number of sites 
are covered consistently across all 96 samples using TMS compared to RRBS.
(TIFF)

S15 Fig.  Correlation in average site-level methylation between samples processed using Illumina’s DRAGEN 
pipeline and our custom pipeline. Each point represents the average methylation at a given site for 88 samples that 
were processed using both pipelines (R2 = 0.9972).
(TIFF)

S16 Fig.  Correlation in site-level DNA methylation estimates between TMS and RRBS data after permuta-
tion. For samples processed using both TMS and RRBS, we assessed the correlation in site-level methylation for 
all sites after permuting sample ID randomly and compared them to non-permuted, or matched, sample IDs. R2 
values were generated using linear modeling. Using a t.test, we found a significant difference between the means 
of the two samples (t = 7.6796, p-value = 8.224 x 10–13, mean of matched samples: 0.8345, mean of permuted sam-
ples: 0.7508).
(TIFF)
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