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Supplementary Materials and Methods 
 
Genotype data filtering and processing 

We used Plink [1] to remove the following SNPs from our total dataset of n=1286: non-

autosomal SNPs, SNPs that were not biallelic, SNPs that were not in Hardy-Weinberg 

equilibrium (p<10-8), and SNPs that were not genotyped across >90% of individuals. This 

filtering left us with 1,651,754 SNPs. We also removed 5 samples with call rates <90%, as well 

as 15 individuals with genome-wide heterozygosity values that were >3 standard deviations 

above or below the mean value for the sample set (as in [2]). For samples that were run in 

duplicate, we retained the replicate with the higher call rate.  

Using these SNP and sample sets, we next performed analyses to create a dataset of 

unrelated Tsimane individuals for evolutionary inference. First, we removed SNPs with 

MAF<5% and sites in linkage disequilibrium. Specifically, we used the indep-pairwise function in 

Plink [1] to scan windows of 50kb with a 20kb offset, and to randomly prune variants within each 

window so that no pair exceeded an R2 threshold of 0.8. We then estimated pairwise 

relatedness for all samples using PC-Relate, which performs well in sample sets with population 

structure [3]. We followed the workflow provided here: 

https://bioconductor.org/packages/release/bioc/vignettes/GENESIS/inst/doc/pcair.html. Using 

the relatedness estimates from PC-Relate and functions provided by the program, we randomly 

pruned the dataset so that no individuals remaining in the dataset exhibited a kinship coefficient 

>0.125 (corresponding to third degree relatives). This left us with 203 Tsimane individuals.  

Next, we used GenotypeHarmonizer [4] to combine this reduced dataset with the 1000 

Genomes Phase 3 call set [5] (downloaded from 

ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/). This harmonization is necessary when 

combining genotype data generated via different platforms and pipelines, such that they are 

stored using potentially different or unknown strands. We excluded A/T and C/G SNPs that 

could not be unambiguously merged between the two datasets using the “ambiguousSnpFilter” 

option. This process resulted in 693,720 biallelic SNPs, which were then phased using Shape-IT 

v2.r904 [6] and the 1000 Genomes Phase 3 call set as a reference panel as well as the 1000 

Genomes Phase 3 genetic map. We note that ideally a population specific reference panel and 

genetic map would be used for phasing, but given that none exist, we followed the common 

practice of using the 1000 Genomes dataset for analyses of genetically uncharacterized 

populations [7,8].  

 

Principal components and admixture analyses 
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We merged our filtered, phased data with: 1) the 1000 Genomes Phase 3 call subset for 

Peruvians (the least admixed Native American population), Han Chinese (who are often used as 

the best available ancestral reference for Amerindians [8,9]), Yorubans (to represent African 

ancestry), and British (to represent European ancestry) and 2) all South and Central American 

populations from the Simons Genome Diversity Project [10]. We used Plink [1] to filter for 

MAF>5% in the merged dataset, remove sites in strong linkage disequilibrium (again using a 

window size of 50kb, a 20kb offset, and an R2 threshold of 0.8), and to perform PCA (Figure 1). 

We used two approaches to detect European and West African admixture. First, we 

used the program ADMIXTURE [11] to estimate the proportion of the genome originating from K 

ancestral populations for each individual, with K being specified a priori. We performed these 

analyses using the merged dataset described above for PCA, but with Han Chinese samples 

removed (such that the setup was similar to [8]). We ran ADMIXTURE with K=3-7. Analyses 

using a given value of K were run five times with different random seeds. For each value of K, 

we retained results providing the lowest cross-validation (CV) error and we report these result in 

Figure S1. For ease of visualization, reference populations with >20 samples were randomly 

pruned to n=20 and results for K=4 (the lowest K value close to the minimum CV error) are 

presented in the main text (Figure 2).  

Our second approach relied on local ancestry assignments from RFMix [12]. Here, we 

used 1) British individuals to represent European ancestry, 2) Yoruba individuals to represent 

West African ancestry, and 3) all South and Central American samples from SGDP grouped 

together to represent Native American ancestry. The SGDP samples contain minimal European 

admixture and are therefore arguably a better reference set than the South and Central 

American samples from 1000 Genomes. Using these reference populations, we then assigned 

chromosomal segments for each sample to its most likely ancestral source. We also included 

Peruvian samples from 1000 Genomes in this test set as a positive control, given that admixture 

has been analyzed in this population previously [13–15].  

We observe essentially no evidence for African ancestry within the Tsimane and minimal 

evidence of European admixture (Figure 2 and Figure S1). Our estimates of European 

admixture from RFMix are highly correlated with our estimates from ADMIXTURE (R2=0.8393, 

p<10-16; Figure 2C). For all downstream selection analyses, we pruned our set of 203 unrelated 

individuals down to 196 individuals with >95% Native American ancestry inferred from RFmix. 

We also pruned the 1000 Genomes Peruvian dataset down to 26 individuals with >85% Native 

American ancestry (using higher thresholds for Peruvians resulted in too few samples for 

analysis). The set of admixture-filtered Peruvian individuals used for selection analyses are 
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presented in Table S1. For the Tsimane samples that passed our filters, we followed the 

methods of [8] and masked SNPs in 1) regions of low confidence ancestry assignments (<90%) 

and 2) regions that were inferred to be inherited from a non-Native American ancestor (i.e., 

regions that passed our confidence threshold, but where the most likely assigned genetic 

source was European or African). 

 

Summarizing selection statistics to identify candidate regions 

To identify candidate regions that have putatively been under positive selection, we used 

two approaches to summarize our iHS, XP-EHH, and PBS results set. First, we rank ordered 

the |iHS|, XP-EHH, and PBS distributions and defined outliers as those in the top 1% of each 

distribution. We then binned the genome into 50kb windows with 25kb offsets, and counted the 

number of outlier loci for each statistic that fell in a given window. Windows with outlier numbers 

in the top 1% of the genome-wide distribution for all three selection statistics were considered 

as candidates. Because each statistic has its own underlying assumptions and sensitivities, 

windows that are outliers for many different tests are expected to be enriched for true positives 

[2,8,16]. We required all three statistics to exhibit outliers in a given region in order to identify 

the most robust signals; in other words, we aimed to minimize the false positive rate even if it 

came at the cost of a higher false negative rate (as is common in the literature [2,8,16]). We 

chose to use 50kb windows because simulation studies have shown this window size provides 

good power to detect sweeps with selection intensities between 2Ns=100 and 1000 [17]. 

Our second approach to identify candidate windows used the same results set, but 

summarized in a different way. Specifically, we combined the genome-wide rank of the three 

statistics for each SNP that was analyzable by all methods with a Fisher’s combined score 

(FCS) [18]. This score was equal to the sum, over the three statistics, of –log10(rank of the 

statistic/number of SNPs tested; Figure S2). Outlier regions were then defined as those with a 

median FCS score among the highest 0.1% of the genome. We used this second approach 

because it has been shown that combining different neutrality statistics into a single score may 

increase power [18]. The rationale being that neutrality statistics are expected to be more 

correlated for positively-selected variants relative to neutral variants [19]. The set of 50kb 

regions identified by our two summary approaches were highly overlapping (Table S2) and the 

union set with overlapping regions collapsed is summarized in Table S3. 
 
mRNA-seq data generation and processing 
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Between July and November 2017, venous blood samples were collected in PAXgene 

tubes from Moseten (n=88) and Tsimane individuals (n=154). Samples were processed 

according to manufacturer's protocol (kept at ambient temperature for 2 hours, then transferred 

to a -20°C, and were stored at -80°C after they were exported to the US). In the US, blood 

samples were sent to the UCLA Social Genomics Core Laboratory where RNA was extracted, 

prepared into libraries (using the Lexogen QuantSeq 3′ FWD mRNA-Seq Library Prep Kit), and 

sequenced on an Illumina NovaSeq to a depth of 6.99 ± 1.47 (SD) million reads per sample. 

Samples were sequenced in two batches, with all Moseten samples and five Tsimane samples 

sequenced in one batch and all remaining Tsimane samples sequenced in a second batch. 

Because of the extreme population-batch confound, we did not attempt to combine Tsimane 

and Moseten samples and instead processed them as two separate datasets (after removing 

the five Tsimane samples sequenced with the Moseten samples). Below, we describe our 

processing procedures, which were performed for each dataset separately. 

Post-sequencing, reads were trimmed to remove adapter contamination using cutadapt 

[20], mapped to hg38 using the splice aware aligner STAR [21], filtered to only retain uniquely 

mapped reads, and overlapped with Ensembl gene annotations using HTSeq [22]. We 

subsetted the transcriptome to focus on protein coding genes, and removed the HBB, HBA1, 

and HBA2 genes from downstream analyses because these genes were clear outliers with very 

high counts. The large number of reads assigned to hemoglobin related genes is not surprising 

given that the data were derived from whole blood samples.  

For each protein coding gene (excluding HBB, HBA1, and HBA2), we calculated the 

median counts per million (CPM) value across all individuals and filtered for genes with median 

CPM >3. This left us with 11,295 protein coding genes (after excluding genes that only passed 

filters in one population). Read count data were then normalized using the function 

voomWithQualityWeights in the R package limma [23]. Further, we removed known technical 

effects—namely the proportion of uniquely mapped reads, the average length of aligned reads, 

the 260/280 ratio, and the number of total mapped reads—from each dataset using linear 

models in limma [23].   
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Supplementary Figure 1. Global ancestry analysis with ADMIXTURE. A) Cross-validation 
error obtained from 25 runs of the program ADMIXTURE with different random seeds and 5 
values of K. K=5 consistently produced the lowest cross-validation error. Admixture results for 
B) K=4, C) K=5, and D) K=6. Each bar represents an individual, and the height of the colored 
bar on the y-axis denotes the proportion of the genome assigned to a given ancestry 
component. The number of colors in panels B-D corresponds to the number of a prori defined 
ancestry components for a given ADMIXTURE run; colors are recycled across panels for 
visualization, they are not related across different ADMIXTURE runs. GBR=British, 
PEL=Peruvian, and YRI=Yoruba individuals from 1000 Genomes; SGDP=all South and Central 
American individuals from the Simons Genome Diversity Project. 1000 Genomes populations 
were randomly subsampled to n=20 for visualization.  
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Supplementary Figure 2. Manhattan plot of Fisher’s combined scores. Fisher’s combined 
scores were calculated for 239,106 loci for which XP-EHH, iHS, and PBS could all be 
calculated. 
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Supplementary Figure 3. Observed selection statistics versus the distributions produced 
from neutral simulations. The black line represents the genome-wide distribution of Fisher’s 
combined scores obtained from 100 neutral demographic simulations. Fisher’s combined scores 
(FCS) summarize the genome-wide rank of the iHS, PBS, and XP-EHH statistics for a given 
SNP (see Methods). The blue dots represent the median FCS for all SNPs in each of our 21 
candidate regions. Points are jittered on the y-axis for visualization only (the y-axis values 
themselves are not meaningful). 
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Supplementary Figure 4. QQ-plots of genotype-phenotype association testing results. 
Each set of colored dots compares the distribution of p-values obtained from performing 
genotype-phenotype associations in 19 candidate regions (y-axis) to the expected uniform 
distribution (x-axis). Dotted line represents x=y. A-B) Results from models that include both 
Tsimane and Moseten individuals, C-D) Results from models that include Tsimane individuals 
only. 
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Supplementary Figure 5. Phenotypic effects of genetic variation under selection, 
stratified by population. A-B) Results for candidate regions with a significant eQTL, C-E) 
Results for candidate regions with a significant genotype-phenotype association. X-axis shows 
copies of the minor allele, y-axis shows normalized gene expression levels or phenotypic 
measures (units for triglyceride and HDL cholesterol levels=mg/dL). In all cases, gene 
expression and phenotypes were modeled linearly and assume an additive model. Detailed 
results are provided in Tables S9-10. SNPs used for association mapping are as in Figure 4. 
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Supplementary Figure 6. Whole blood gene expression levels for candidate genes. X-axis 
shows all candidate genes and y-axis shows the distribution of log 10 counts per million (CPM) 
from RNA-seq data. A median CPM cutoff of >3 (equivalent to a log10 CPM>0.48) was used to 
filter for expressed genes. 
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Supplementary Figure 7. Moseten dataset overview. A) Specific sampling locations within 
Bolivia for unrelated Tsimane (n=203) and Moseten (n=52) samples. B) Results from a principal 
components analysis including Tsimane and Moseten samples as well as 1) Han Chinese, 
Peruvians, Yoruba, and British individuals from 1000 Genomes and 2) all Central and South 
American individuals from the Simons Genome Diversity Project (SGDP). Samples are colored 
by their population of origin and shapes denote which study generated the data (circles=1000 
Genomes, triangles=SGDP, squares=this study). Inset shows values for principal component 1 
(PC 1) stratified by population and/or study for visualization.  
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Supplementary Figure 8. Permutation results for select genotype-phenotype 
associations. For all tag SNPs discussed in the main text, we reran our analyses after 
permuting the genotype label 1000 times, to confirm that the empirical null distribution was 
uniform as expected. Histograms show the distribution of p-values for the genotype effect on a 
given phenotype from 1000 permutations. 
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