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Studying biological ageing in animal models can circumvent some of
the confounds exhibited by studies of human ageing. Ageing research
in non-human primates has provided invaluable insights into human
lifespan and healthspan. Yet data on patterns of ageing from wild
primates remain relatively scarce, centred around a few populations
of catarrhine species. Here, we introduce the white-faced capuchin, a
long-lived platyrrhine primate, as a promising new model system for
ageing research. Like humans, capuchins are highly social, omnivorous
generalists, whose healthspan and lifespan relative to body size exceed that
of other non-human primate model species. We review recent insights from
capuchin ageing biology and outline our expanding, integrative research
programme that combines metrics of the social and physical environments
with physical, physiological and molecular hallmarks of ageing across
the natural life courses of multiple longitudinally tracked individuals. By
increasing the taxonomic breadth of well-studied primate ageing models,
we generate new insights, increase the comparative value of existing
datasets to geroscience and work towards the collective goal of developing
accurate, non-invasive and reliable biomarkers with high potential for
standardization across field sites and species, enhancing the translatability
of primate studies.

This article is part of the discussion meeting issue ‘Understanding age
and society using natural populations’.

1. Introduction: individual variability in rates of ageing
One of the most enduring questions in public health is why some individ-
uals remain healthy and high functioning well into old age, while others
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experience physical or cognitive deficits, chronic disease and premature mortality [1]. The profound social and economic
consequences of rapidly ageing populations around the world [2,3] underscore the importance of efforts to extend human
healthspan by reducing or delaying the burden of chronic diseases and disabilities associated with older ages [4,5]. Much
variation in the progression of human ageing processes remains poorly explained, but a growing body of literature highlights
the contributions of both the social and physical environment. The emerging field of translational geroscience seeks to under-
stand the biological mechanisms of ageing and how they are connected to the emergence of chronic conditions associated with
old age by studying parallel processes in animals [6,7].

In humans, biological ageing includes gradual declines in multiple body systems and functions, including loss of physical
capability [8], impaired immune function [9], endocrine dysregulation [10] and molecular alterations [11,12]. These declines
are accompanied by progressively increasing risks of a wide range of diseases—including cancer, cardiovascular disease and
neurocognitive declines—and accelerating risk of death [13]. There are also a number of known differences in the propensity
of males and females to develop age-related diseases. For example, men are more likely to develop certain cancers [14],
while women are more likely to suffer from autoimmune diseases such as rheumatoid arthritis [15,16], and stress-associated
conditions such as depression [17].

Slowing the rate of biological ageing—the age-dependent functional deterioration experienced by most organisms [6]—
would delay the onset of age-related diseases and conditions, extending the human healthspan [18]. This goal, known as the
geroscience hypothesis, is rooted in the idea that the pace of biological ageing is malleable [19]. Some of the clearest evidence
that rates of ageing are strongly modulated by socio-environmental factors comes from captive or laboratory animal models,
in which specific interventions (e.g. caloric restriction) or pharmacological treatments have been shown to extend lifespan and
reduce the prevalence of diseases associated with old age [20]. However, key knowledge gaps remain, including: (i) which
socio-environmental factors contribute most strongly to accelerated or decelerated biological ageing, (ii) the degree to which
different body systems show these effects, and (iii) which individuals are most strongly affected and why.

Here, we highlight the value of a long-studied wild population of white-faced capuchin monkeys (Cebus imitator) that
contributes to filling these knowledge gaps and advancing the understanding of the social and ecological determinants of
ageing. We begin by highlighting the value of field studies of natural populations, then focus on why capuchins are an
exceptionally interesting species for ageing research, detailing some of the insights provided by decades of research on
white-faced capuchins in Costa Rica. We end by briefly describing our integrative study that combines metrics of the social
and physical environment with physiological and molecular hallmarks of ageing across the life course in multiple social groups
of white-faced capuchin monkeys studied by the Santa Rosa Primate Project.

2. Field studies of natural populations
Studies of human health and the pace of ageing are limited by the difficulty of collecting detailed within-subject longitudinal
data on lived experience and health outcomes. Such studies also have numerous confounds, including individual variation
in lifestyle, early-life experience, socioeconomic status and access to health care. Ageing research on animal models has been
invaluable because it can circumvent many of these challenges. The logistical and analytical advantages of ageing research on
captive animal models, in which a high degree of experimental control can be achieved, are extensive and widely acknowledged
[21]. But research in captive settings cannot encompass the full scope and complexity of natural stressors and modifiers
affecting natural populations, including humans, highlighting limitations associated with the loss of ecological validity in
captive animal models compared to those living in their natural environments [22,23]. Only by studying wild animals in
natural environments can we gain insights into selection pressures and evolved life history, with ageing (and its potential for
plasticity) as a quintessential part. The study of ageing in animal models can be improved by bringing together complementary
approaches in both wild and captive settings [24]. For instance, assessing the generalizability and validity of findings is essential
for enhancing the translational value of ageing research in animal models, and these targets can be realized most effectively
by integrating research from the wild and captivity. On one hand, validating correlational findings from the field may require
conditions that are typically achievable only in captivity, such as the ability to apply experimental manipulations to isolated
individuals, behaviours or responses to eliminate possible confounders and make strong causal inferences. On the other hand,
observations from the wild are needed to confirm the ecological validity of observations from captivity, including the realism
of environmental contexts and stimuli. In addition, studies that directly compare ageing in wild and captive individuals can
reveal a wider range of biological variation than in either setting alone, helping to delimit the boundaries of possible trait
values and understand their flexibility across environmental contexts [25–27]. For instance, by studying how processes such as
domestication and urbanization impact ageing in animals, we can gain insights into the role of analogous processes throughout
the course of human evolution.

Accumulating evidence has revealed that longitudinal studies of wild nonhuman primates can be particularly informative
for generating insights into how social and physical environmental factors influence natural ageing processes and the human
healthspan [27–31]. As the closest phylogenetic relatives of humans, non-human primate models are particularly valuable in
ageing research because of the behavioural, functional and physiological characteristics that they share with humans [32–34].
Wild populations of primates living in natural environments hold underutilized potential for biogerontology because the
mechanisms of ageing that they share with humans are likely to be universal across environmental contexts, making those
mechanisms promising targets for effective, widely applicable interventions [35,36]. For example, as in humans, sex differences
in mortality risk and disease presentation are also found in some non-human animal models, suggesting that such models can
be useful for parsing out the contributions of extrinsic and intrinsic factors. The social construction of gender across human
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cultures has health implications beyond that of biological sex, but influences of sex and gender on health are often interlinked,
making potential biological and social influences of sex versus gender difficult to disassociate in human health and ageing
research [37]. Because human gender socialization does not have a close parallel in nonhuman primates, sex differences that
primates share with humans are likely to reflect biological commonalities beyond cultural factors [38]. And in contrast to
studies of health and ageing in captive primates, which typically focus on the effects of isolated sources of severely adverse
social or physical exposure [39,40], long-term studies of wild primates can shed light on the longitudinal and intergenerational
consequences of multiple co-occurring and interrelated socio-environmental factors that are more closely matched to the
conditions under which the biological responses evolved.

Although several non-human primate species living in captivity are established as models for ageing research [34], very
few natural populations have been developed as comprehensive ageing models despite their significance for understanding
human biology and behaviour. This scarcity reflects the challenges of studying ageing in non-human primates living in wild
or naturalistic settings. For example, because they have relatively long lives compared to many other animals, prospective
longitudinal studies on the life-course outcomes of non-human primates require decades of continuous data collection. The
most well-established wild or naturalistic non-human primate models of ageing—in which multiple measures of ageing have
been characterized in behavioural, physiological, functional, molecular and demographic domains—include populations of
baboons (Papio sp.) [41], rhesus macaques (Macaca mulatta) [28] and chimpanzees (Troglodytes schweinfurthii) [42,43]. The current
concentration of ageing research on natural populations of great apes and cercopithecines has some clear advantages, as
these close relatives of humans show physiological changes across the life course that recapitulate human biology. However,
understanding the generality of ageing mechanisms as well as potential interventions is a central goal in translational gerontol-
ogy, and this goal may be best served by expanding ageing research on natural populations to taxa that are more distantly
related to humans [44].

The small taxonomic breadth of current studies of ageing in natural primate populations also underscores a basic limitation:
to date, animal research on ageing has been limited to populations where invasive sampling of blood and tissues has provided
the source of much of the available molecular and physiological data. Invasive sampling methods and assessment tools that rely
on such methods are not possible in most studies of wild primate populations that are highly relevant to human health and
ageing. This may be due to ethical considerations, logistical challenges or laws and regulations that govern the scope of research
protocols on natural populations that are often of the highest conservation concern. Advances in non-invasive sampling are,
therefore, essential for creating new opportunities for ageing research on natural populations.

For example, DNA methylation is a well-established molecular hallmark of ageing in humans, non-human primates and
other biomedical models [11,45], however, molecular sampling for studies of epigenetic alterations of wild and free-ranging
primates to date relies on darting or trapping to collect invasive blood and tissue samples. Recent advances in the use of the
intestinal epithelium to study epigenetic ageing in humans [46] indicate the feasibility of using epithelial cells sorted from
faecal samples of non-human primates to quantify epigenetic ageing non-invasively from wild animals (figure 1). Indeed,
whole genome sequencing and analysis can be undertaken by sorting cells found in faeces [47]. Such samples hold promise for
examining the epigenome, as well as DNA sequence data.

Methods for measuring mammalian hormone metabolite concentrations were first developed in the late 1970s, and enabled
a new era of field studies that were able to link the social and physical environment to the variation in animal conditions
and underlying physiology [48]. Recent studies have validated several non-invasive biomarkers of immune activation and
inflammation, such as urinary neopterin as a marker of cellular immune activation, demonstrating that they are robust to field
collection and storage conditions for use in studies of wild primates [49,50]. Collectively, these non-invasive techniques have
great potential for new studies of the links between the social and physical environment and the variation in the pace of ageing.
But for many of these biomarkers, the relationship between naturally occurring variation and age needs to be established.

3. Capuchins as a model species for the study of ageing
White-faced capuchins are a promising model system for the study of biological ageing, with high potential to yield new
knowledge about ageing processes. Natural populations of white-faced capuchins are among the most comprehensively studied
wild primates in the world, with multiple long-term, individual-based, longitudinal field research projects offering a rich but
until now underdeveloped foundation for ageing research [51–53]. Among these projects, the Santa Rosa capuchin research
project is the longest running, most continuous, and least altered by anthropogenic activities [52,54], but other white-faced
capuchin research projects also have high potential for ageing research, including those at the sites Lomas Barbudal [53] and
Taboga [55]. The wild and unprovisioned Santa Rosa population lives in a highly accessible forest and has been studied in
depth—including behavioural, life history, pedigree and environmental data—nearly continuously since 1983 [52,54]. These
primates reside in groups of multiple related adult females, multiple immigrant males, and their immature offspring. Capuchin
social groups in this population range in size from 5 to 35 individuals with a sex ratio skewed towards females [56]. We have
documented relevant variation in the social and ecological environments of these capuchins, their social interactions, diets and
foraging behaviours, as well as extensive variation in how long individuals live, their reproductive output and their later-life
health [52,54]. In addition, the exceptional depth and quality of more than four decades of life-history data from the Santa
Rosa capuchin population have enabled and contributed to ground-breaking comparative insights about natural patterns of
age-specific mortality [27,57–61] and reproduction [60–63] in wild primates, helping to contextualize patterns of ageing in
humans.

These characteristics of the Santa Rosa capuchins establish this population as an excellent model system in which to study
both age-related variation cross sectionally, and the longitudinal progression of ‘ageing in the wild’ in multiple body systems,
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including social, environmental and demographic sources of variation in these patterns. Cross-sectional, population-level study
designs are more common in ageing research, including in natural animal models, and they offer several advantages: they
require less time and effort to implement and are less vulnerable to confounding effects of social or environmental factors
that change over time. These characteristics make cross-sectional study designs ideal for discovering biomarkers that exhibit
age-related variation. But cross-sectional study designs also have important shortcomings in ageing research that can only
be overcome by employing longitudinal approaches. First, longitudinal sampling is necessary for characterizing individual
trajectories of ageing in different domains (functional, physiological and molecular), which is a prerequisite for studies that
seek to understand sources of variation in the pace of ageing. Second, cross-sectional approaches alone cannot establish links
between factors of interest (e.g. biomarker values, socio-environmental conditions and metrics of illness and disease) and
life-course outcomes, including morbidity and mortality. Finally, longitudinal study designs are less vulnerable to cohort and
selective disappearance effects compared to cross-sectional study designs [64].

A distinct combination of life-history, behavioural, ecological and phylogenetic traits distinguishes capuchins from more
established wild or naturalistic non-human primate models and demonstrates their potential to complement ageing studies in
humans and in other animal models by expanding cross-species comparisons of parallel measures of ageing. In the remainder
of this section, we detail why capuchins are particularly promising for answering questions about ageing, with an emphasis on
traits that distinguish them from other widely used non-human primate models for ageing.

First, capuchins share several key life-history-related traits with humans, while standing out from other non-human primates
in important ways. Compared to most other mammals, all primates have relatively large brains, a slow pace of development
and extended longevity for their body sizes [65]. But capuchins are extraordinary even among the primates: they are roughly
the size of a house cat, yet they have the largest ratio of brain size to body mass of any non-human primate [66], a slower pace of
development in relation to their body size [67], and exceptional cognitive capabilities in multiple domains that are of particular
relevance for ageing research [68–71]. We have recently made progress in identifying the genetic basis of some of these traits,
including genes under positive selection that are associated with longevity and large brains [47].

Capuchins are not only well suited based on their suite of human-like traits but they also offer advantages as an animal
model system over species that also share these traits. Other non-human primate species that exhibit a slow pace of develop-
ment, large brains and extended longevity, such as chimpanzees, have substantially larger bodies, longer lifespans, slower
generation times and tend to be more difficult to study both in the wild and in captivity [34]. These contrasts speak to
conflicting goals for the establishment of animal models of human ageing. From a logistical perspective, the most practicable
natural animal models are species with short lifespans and short generation times that can be studied easily in a variety of
settings, all of which facilitate the accumulation of large sample sizes. But from a theoretical perspective, the most informative
natural animal models of human ageing are likely to be those that have a more human-like ageing course, including prolonged
development and long lifespans. The unique combination of life-history traits in capuchins presents a compelling balance
between these divergent goals.

Second, there is high variance in longevity both within populations of wild capuchins and compared to those in captivity,
suggesting high potential for environment-associated effects on health and longevity, and thus on the pace of biological ageing
(figure 2). Because of high early-life mortality, wild white-faced capuchins have life expectancies at birth of only about 10 years,
but if they survive to adulthood, wild capuchins of both sexes can expect to live into their mid-20s [27] and some individuals
live more than 30 years [73] (figure 2). In captivity, capuchins have life expectancies at birth in the mid-20s, and long-lived
individuals in captivity can reach over 50 years of age [27,74] (figure 2). Such within- and between-population variability
is an essential quality of a good animal model of ageing and is crucial for identifying factors that influence rates of ageing
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Figure 1. (a) Schematic representation of the faecal fluorescence-activated cell sorting (FACS) method for isolating epithelial cells from faecal samples to purify
primate DNA, generating a source of tissue-grade DNA material for molecular analyses. (b) Proportion of capuchin DNA pre- and post-sorting based on droplet digital
PCR using markers for bacteria and for primate DNA.
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by enabling quasi-experimental study designs in which putative socio-environmental determinants of ageing can be linked
statistically to different life-course outcomes [44].

Importantly, some of the natural variation in health and longevity in the Santa Rosa capuchins can be attributed to both
social and ecological factors. Like humans, the Santa Rosa capuchins experience environmental extremes, which include
dramatic seasonal shifts and recurrent droughts [75], and like humans, they show resilience and differential susceptibility to
those extremes [52,76]. High rainfall seasonality at the site is a dominant driver of intra-annual variation in capuchin behaviour,
diet and physiology through its sweeping effects on dry-forest ecology, including effects on food availability [75,77,78]. For
example, periods of fruit and water scarcity induce physiological signatures of metabolic distress in females, particularly those
that are low ranking or pregnant [79]. Such periods are also associated with elevated glucocorticoid secretion [80] and shifts
in the composition and function of the gut microbiome [78], both of which are key elements in the biology of human ageing.
Environmental variability can also affect health by varying the risk of exposure to helminths and other parasites, both directly
(e.g. through contact with parasites in standing water sources that accumulate parasites during dry conditions) and indirectly
(e.g. through shifting social cohesion and the presence or density of intermediate vectors such as arthropod prey) [81,82]. In
the Santa Rosa capuchins, the prevalence of some parasites varies seasonally [83,84], and although individuals differ in their
infection status, older individuals are generally infected at higher rates and show greater parasite species richness [83]. Bacterial
and viral pathogens, including some with the potential for zoonotic transmission to humans, are also found in platyrrhine
primates, including some wild capuchin populations [85]. Individual-based longitudinal studies of the cumulative effects of
infectious disease and illness on ageing in human hunter-gatherers [86] and in some wild primates [87] have led to important
translational insights, but in wild capuchins this remains an underdeveloped area that should be prioritized.

In addition, inter-annual variation in drought severity strongly affects the demographic structure of the capuchin population
through its effects on pre-adult mortality [60,88,89]. Apart from Santa Rosa, there are two other intensively studied populations
of white-faced capuchins in this highly seasonal region of northwestern Costa Rica [51,73]. Ecological differences among the
three sites appear to link diverse physiological responses to environmental seasonality [55], and severe El Niño-mediated
droughts that occur in this region are associated with waves of elevated mortality in at least some of these populations
[89]. In an analogous way, infrequent but severely adverse events experienced by human populations, such as the Dutch
Hunger Winter, have been especially instructive for understanding how early-life environmental experiences can modify the
progression of ageing and have long-lasting effects on health and longevity [90].

Third, capuchins show a varied repertoire of complex extractive foraging techniques [91], preferred foraging locations
[92] and peculiar social rituals characterized by innovations that emerge and diffuse among individuals in age-dependent
patterns [91,93]. Conspecifics and congeners at other sites are among the only natural populations of non-human primates,
aside from chimpanzees, that habitually use stone tools to forage on well-protected, energy-dense food resources [71,94]. These
complex behaviours are transmitted largely through social learning in which inexperienced individuals observe and emulate
the techniques of more experienced, typically older individuals [71,91]. Capuchin societies thus offer rare opportunities to study
age-dependent patterns of sociality that strongly echo those of human societies, in which age, foraging proficiency, ecological
challenges and life-course outcomes are closely interlinked.

Fourth, white-faced capuchins experience frequent social turmoil, violence and adversity, factors which have been robustly
linked to elevated risk of premature mortality in humans [95]. In the Santa Rosa capuchin population, these experiences arise
primarily from predation and predation attempts, aggressive intergroup encounters and alpha male replacements, the latter
often resulting in the injury, death or disappearance of multiple group members [73,96–98]. Males, particularly alpha males,
are the most active participants in these types of events and thus are likely to experience more frequent and direct exposure to
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high-stress situations in comparison with other age-sex classes. Additionally, infanticide is the leading cause of infant mortality
in wild capuchins, which imposes significant costs on females and is a likely source of intense early-life stress for infant
capuchins who are at risk of being targeted [99]. In the Santa Rosa population, the risk of early-life mortality is modulated
by aspects of the infant’s social environment: during socially stable periods, infant survival is highest among the offspring of
highly sociable mothers who occupy a central position in the group, but during periods of high infanticide risk, these same
infants appear to be targeted at higher rates, leading to elevated mortality [100]. Wild capuchins, therefore, offer a possibility to
investigate how resilience to different types of social adversity varies across age, sex, social status and social connectivity—all of
which are hypothesized to play important roles in the convergent pathways that link social environments with life expectancy
and disease risk in humans and other social animals [31].

Fifth, white-faced capuchins exhibit social patterns that mirror those found in many human societies [101,102], but that
are unlike those found in existing non-human primate models of ageing. For instance, in most non-human primate species
long-lasting same-sex alliances either occur in only one sex or do not occur at all, but in capuchins, both sexes frequently
form coalitions and maintain long-lasting alliances with same-sex social partners [100,103]. These coalitions are not invariably
structured by kinship, as they often are in female cercopithecines. As in many other well-studied primates, female capuchins
remain in their birth group for life, enabling the formation of life-long intergenerational social bonds that have the potential
to influence fitness and survival. For example, the long-term study of capuchins in the Lomas Barbudal population found
evidence linking social integration (determined by affiliative interactions and proximity to others in foraging contexts) to
increased female survivorship, an effect that was independent of female rank status [104]. But unusually, male capuchins,
which disperse from their birth group around the age of sexual maturity (approx. 6 years) and reside in multiple different
social groups throughout their lives, are able to maintain strong ties with close male kin by dispersing together with other
males or selectively joining groups containing familiar, previously dispersed males [105]. Co-resident male capuchins cooperate
to compete against male coalitions in other groups, leading to frequent coalitionary group takeovers; this distinct mode of
male–male coalition formation requires a different explanation than other modes that are more common across primates [106].
Additionally, our work in Santa Rosa has shown that dominance relationships in female capuchins are relatively relaxed
compared with well-studied cercopithecines: while female dominance rank is primarily (but not solely) influenced by maternal
rank, maintenance of high rank also depends on the presence and cooperation of close female kin (i.e. sisters and adult
daughters) [107]. Male dominance rank strongly predicts reproductive success in white-faced capuchins, and attaining and
maintaining high rank (alpha status) is largely dependent upon a male’s ability to form successful coalitions with co-resident
adult males with whom he may or may not be related [108,109]. However, some males that remain subordinate are nonetheless
able to achieve high reproductive success by cooperating with and supporting the alpha male [110]. Thus, rank status for both
sexes, and the preferential access to both social and ecological resources that it affords, is strongly shaped by an individual’s
social influence—the ability to affect the behaviour of others.

Human studies examining the impact of ageing on social influence have found both generalized declines in social cognition
at older ages and increased ‘wisdom’ or skill in navigating social conflict [111–113], and some of these patterns are strongly
recapitulated in ageing non-human primates [114]. For example, capuchins also show variability in the impacts of ageing on
social influence, given that some of the oldest adult females and males retain alpha positions until their deaths, while others are
deposed and become subordinate at similarly old ages.

4. Leveraging the long-term Santa Rosa study to assess the socio-environmental determinants of the
pace of ageing

Building on our rich foundation of individual-based life histories and long-term monitoring of important social and ecological
modifiers, we have recently expanded the scope of our work in the Santa Rosa capuchins to encompass a wider range of
behavioural observations, non-invasive biospecimen collection and laboratory assays that are relevant to human ageing (figure
3). The overarching goal is to generate insights into how social and physical environmental factors contribute to heterogeneity
in rates of ageing and health disparities. To achieve this, we are combining cross-sectional population-level sampling to
identify and study hallmarks of ageing across behavioural, physiological and molecular domains with longitudinal sampling
to characterize individual biomarker trajectories and link them to individual experiences and life-course outcomes. Below, we
describe renewed efforts to leverage the long-term Santa Rosa project to make impactful contributions to our understanding of
the social and ecological modifiers of ageing and healthspan.

(a) Broadening biomarkers of ageing and health from non-invasive samples
We are currently broadening the range of biomarkers under long-term study at Santa Rosa to provide a more complete
representation of the ‘hallmarks’ [115] or ‘pillars’ [116] of ageing analogous to those of clinical relevance to humans [33]. To
this end, we are validating putative biomarkers of physical condition, physiological function and molecular profiles cross-sec-
tionally across dozens of animals of different ages, and sampling them longitudinally in the same animals throughout their
adult lives (defined as 6 years of age or older) (table 1, figure 3). The biomarker validation process has involved establishing
non-invasive sample collection methods, refining measurements of each biomarker, quantifying the accuracy and repeatability
of biomarker values and determining the degree to which the biomarkers that show age-related differences in humans show
similar patterns in capuchins. We are also using ‘gold standard’ sources (blood and tissue biopsies) from a cross section of
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capuchin monkeys housed in captivity to validate FACS-derived DNA methylation analyses (figure 1) to ensure that similar
methylation profiles are obtained from each source and that they accurately reflect chronological age.

The biomarkers that we are targeting include those that have been associated with elevated morbidity or mortality risk in
humans, and which therefore may signal the divergence of individual frailties at older ages (table 1). For instance, age-related
loss of skeletal muscle mass (sarcopenia) is a risk factor of disability and mortality in older humans [117] and develops along
a similar trajectory in some non-human primates [118,119]. Likewise, changes in adrenal function and the development of a
pathological proinflammatory phenotype in old age (‘inflammaging’) are widely recognized as hallmarks of ageing [115,116],
with certain measures of immune activation and inflammation being associated with elevated risk of age-related morbidities,
including cardiovascular disease [120] and Alzheimer’s [121], as well as elevated all-cause mortality risk [122]. Furthermore,
characterizing gut microbial and proteomic senescence from faecal samples has generated new data on age-related biological
processes and maladies, provided insight into declining digestive function, and even allowed for the generation of microbial
‘clocks’ based on diversity, differential abundances and putative functions of common bacterial genera [123].

(b) Behavioural assessments of physical function and social environments
Quantitative measures of human healthspan have become a central focus in biogerontology and are primary outcomes targeted
for clinical interventions [124]. Accordingly, there is growing interest in finding measures of healthspan in animal models
that translate meaningfully to humans [33,125]. To date, measures of physical function have been among the most successful
non-invasive approaches to quantifying healthspan in animals [126–130], and multiple measures of physical capability are
useful for identifying older people with an elevated risk of morbidity and mortality. For example, grip strength, standing
balance, chair rise time and walking speed all show characteristic age-related declines in older people, comprise key elements
of ‘frailty syndrome,’ and correlate significantly with all-cause mortality [131,132]. Additionally, low masticatory ability in older
people is associated with low nutritional status and other indicators of poor health [133]. We have developed behavioural
assessments of physical function in the Santa Rosa capuchins that are designed to have clinical relevance to humans by
employing non-invasive analogues of these geriatric assessments: we measure gait speed, posture and feeding selectivity and
efficiency on foods that differ in their ease of access and processing.

Similarly, we have expanded and refined our assessments of capuchin social environments across the life course, focusing
on measures with direct parallels to factors widely recognized by social scientists as being strongly associated with health and
survival in humans. For example, older people who are socially isolated have significantly elevated risk of inflammation and

Early Life Environments Adult Environments

Ecological Conditions Social Conditions

Cross-Sectional and Longitudinal Sampling

Pace-of-Ageing Biomarkers

Life-Course Outcomes

Health

Mortality

Reproduction

Feeding
Competency

Activation of
the HPA Axis

fGC

Inflammation

HPT

Relative Muscle
Mass (RMM)

Cell-Mediated
Immunity
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Size & Weight
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Specific
Gravity

Health Status/
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DNA
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Figure 3. Conceptual overview of research on the social and ecological determinants of ageing in the Santa Rosa capuchin population. Artwork by Jordie Hoffman.
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hypertension [134] and face a 1.5-fold increase in all-cause mortality [135], and remarkably parallel links have been found in a
range of social mammals, including in wild non-human primates of both sexes [31,136]. In the Santa Rosa capuchins, some of
these key measures of individual social advantage and social adversity, including social status and social instability, have been
tracked for decades as part of our long-term data collection [52,100]. Analogues of other structural and functional measures of
social integration that are important in humans, such as affiliative network centrality and the strength and stability of social
support, required new behavioural data collection approaches that we implemented in conjunction with our expanding focus
on measures of ageing (figure 3).

(c) Contributions of social and physical environments to the pace of ageing
The long-term aim of the Santa Rosa ageing project is to undertake longitudinal characterization of validated health and
ageing biomarkers across the natural life course of capuchins to infer socio-environmental influences on individual trajectories
of ageing, as well as sex differences in these relationships. Current approaches to measuring the pace of ageing involve the
calculation of composite indices of biological age that summarize an assortment of different biomarkers, most commonly in
cross sections [137]. Although innovative longitudinal approaches are underway in human cohorts, they involve a comparison
of the change in biological age from an initial reference point (e.g. young adulthood) to a single or at most a few follow-ups
separated by multiple years [137–139]. These approaches can place an individual’s pace of ageing on a spectrum from fast to
slow, but they provide only a limited picture of the ageing trajectory’s dynamic behaviour, its fundamental modes of variation
and when and why ageing trajectories begin to diverge. A more complete picture of the determinants of individual variation
in the pace of ageing can be achieved by combining cross-sectional biomarker identification with densely sampled longitudinal
characterization of biomarker trajectories.

Furthermore, the discovery that the risk of age-related diseases that reduce adult healthspan and lifespan can be predicted
in childhood has increased focus on the critical role of early-life adversity in determining the pace of ageing [140]. For
example, children who experience more early-life adversity are more susceptible as adults to a wide range of health problems—
including diabetes, obesity and cardiovascular disease [141]—as well as earlier mortality [95]. Adverse childhood experiences

Table 1. Biomarkers of ageing sampled from adult white-faced capuchins in Santa Rosa.

ageing domain biomarker non-invasive method relevance to human ageing

behavioural / functional gait speed terrestrial walking speed slow gait speed in older people is correlated with
higher mortality risk

behavioural / functional feeding selectivity and
competency

bite rates and food selectivity with respect to
mechanical properties (hardness, toughness) and
processing difficulty of food items

low masticatory ability and strength in older
people is associated with low nutritional status,
depression and other indicators of poor health

behavioural / functional posture body orientation and support postures during
different behaviours with respect to relative grip
and core strength required to maintain them

manual grip strength, standing balance and chair
rise time all show age-related declines in older
people and correlate significantly with all-cause
mortality

physical body mass strategic placement of remotely triggered electronic
scale at frequented waterholes

weight changes in older people are associated with
higher mortality risk

physical body size paired-laser photogrammetry to measure
shoulder-to-rump length

together with body mass, used for calculation of
BMI, a strong predictor of mortality risk

physical relative muscle mass indexing urinary creatinine to urinary specific gravity loss of skeletal muscle is a health risk factor

physiological inflammation haptoglobin (HPT) in faeces HPT is a nonspecific biochemical marker of
inflammation

physiological inflammation soluble form of the urokinase plasminogen activator
receptor (suPAR) in urine

suPAR rises in response to inflammatory conditions

physiological immune activation neopterin (NEO) concentrations in urine NEO is a marker of infection and disease

physiological adrenal function metabolites of glucocorticoids in faeces (fGC) older people show overproduction of GCs and
greater cortisol responsiveness to stressors

molecular DNA methylation low-input targeted bisulfite sequencing of DNA
isolated from gut and urinary epithelial cells

DNA methylation-based age acceleration predicts
poorer health and increased mortality in humans

molecular gut microbial
senescence

generating a ‘microbiome clock’ based on declining
microbial diversity and differential abundances of
common bacterial genera

age-related changes to the gut microbiome
are associated with alterations to intestinal
function, permeability of the intestinal lining,
inflammation and frailty in humans

molecular protein health markers faecal proteomics using liquid chromatography–
tandem mass spectrometry (LC–MS/MS) to
generate age-related proteomic profiles

changes in the gut proteome associated with health
status, diet and age-related functional decline in
humans
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can become biologically ‘embedded’ and are detectable before the onset of age-related disease in the form of dysregulated
adrenal function, increased proinflammatory signalling and altered DNA methylation [142–146]. The cumulative effects of
experiencing multiple adverse events in early life on later-life health and survival are particularly potent [95]. Recent findings
indicate that the strong link between early-life adversity and adult health and survival is recapitulated in some social mammals
[39,147–149], demonstrating their utility as models for studying parallel processes in humans [31]. Additionally, abundant
evidence linking social and physical environments in adulthood to health and survival suggests that these conditions may
modulate the long-lasting effects of early-life adversity [135]. For example, the ‘social buffering’ hypothesis posits that negative
effects of early-life experience on later-life morbidity and mortality can be moderated by the protective influence of adult
social integration or exacerbated by adult social isolation [150]. Cumulative risk models further posit that the effects of social
advantage and disadvantage act cumulatively across the life course, their influence varying dynamically with changing later-life
experiences [151–153]. Finally, some studies do not support a special role for early-life adversity but rather show additive effects
of particular adverse conditions on health that remain similar in magnitude over the entire life course [154]. Longitudinal
life-course studies that measure early-life conditions, adult socio-environmental factors and health outcomes in the same
subjects are needed to make progress in this area [137,155]. While significant hurdles remain to testing these connections in
human subjects, recent work has demonstrated that the hurdles can be surmounted in animal models [156]. Our work in this
area with the Santa Rosa capuchins is designed to test whether specific sources of early-life adversity in capuchins (including
loss of mother, absence of father during social instability and exposure to severe drought or food scarcity) accelerate the pace of
ageing, and whether later-life sources of social and physical adversity (social isolation and drought) or advantage (high social
integration and high social status) further moderate ageing trajectories.

5. Conclusion
Non-human primates are invaluable ageing models, and the comparative study of wild populations has generated many
insights. At present, strong taxonomic bias towards primates in the parvorder Catarrhini (monkeys found in Africa and Asia,
and apes) limits the generalizability of discoveries. We discuss the value of comprehensive study of capuchin monkeys as
an outstanding non-human primate model. These primates are part of the other major taxonomic branch of monkeys, the
Platyrrhini, but due to their similarities with humans, including exceptional longevity and brain size, as well as their complex
social and ecological proclivities, they are well positioned to be of high translational potential. Our research on the Santa Rosa
capuchins aims to capitalize on this potential, investigating patterns and processes of ageing that may generalize to many other
species and systems, including humans. Our individual measures are designed to be analogues for understanding basic ageing
processes in humans, and the biomarkers of ageing that we are measuring all have direct clinical relevance to measuring the
pace of ageing in humans. Furthermore, the socio-environmental factors on which we focus as potential modulators of ageing
(early-life conditions, adult social and physical environments) represent forms of adversity that can influence development and
health, and thus have broader relevance for understanding how environmental factors can get under the skin at different points
in the life course to influence the pace of ageing. And while the Santa Rosa capuchin population has many desirable qualities for
a wild animal model, it shares many of these advantageous qualities with other long-running capuchin study sites, including
the nearby Lomas Barbudal Monkey Project [53]. Importantly, by selecting biomolecular, social and physical metrics that are as
close as possible to those used by other long-running studies of non-human primates and of humans [157,158], we maximize the
translational potential of this research. Finally, we have spearheaded efforts to develop new non-invasive techniques and share
protocols to measure physical, physiological and epigenetic ageing that will translate to a wide range of other systems.

Studies of wild primate ageing are the most valuable when sampling can be done densely, longitudinally and comprehen-
sively. By developing and validating a comprehensive set of ageing biomarkers that are non-invasive but designed to mirror
those established in humans and existing animal models, we improve the ability of field studies to track age-related functional
changes in multiple domains and biological systems. Our aim is to determine how socio-environmental factors lead to distinct
patterns in trajectories of ageing, when and in whom these patterns emerge and which ageing phenotypes are most strongly
affected. Leveraging this intensively studied wild population of capuchins as a new model system for investigating the
social and ecological determinants of ageing will provide critical comparative data, has created and will continue to create
new opportunities for collaborations and training within Costa Rica, and globally, for interested researchers with synergistic
questions, and promote a better understanding of primate health and ageing processes.
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